We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我用自己的文件测试时报错。文件只有两列 word tag 所以配置文件用的word.yml,数据原本是BIO标注,用您的工具转换成BIESO,非常感谢! torch 0.4.1
错误信息如下: 读取文件... ./data/output.txt: 619 ./data/output.txt: 619 抽取预训练词向量... 特征word使用预训练词向量./data/resources/glove.6B.100d.txt: C:\Users\ma\AppData\Local\Programs\Python\Python35\lib\site-packages\gensim\utils.py:1209: UserWarning: detected Windows; aliasing chunkize to chunkize_serial warnings.warn("detected Windows; aliasing chunkize to chunkize_serial") 精确匹配: 2038 / 2715 模糊匹配: 356 / 2715 OOV: 321 / 2715 convert data to hdf5... ./data/output.txt.hdf5: 619 ./data/output.txt.hdf5: 619 SLModel( (word_feature_layer): WordFeature( (feature_embedding_list): ModuleList( (0): Embedding(2716, 100) ) ) (char_feature_layer): CharFeature( (char_embedding): Embedding(64, 30) (char_encoders): ModuleList( (0): Conv3d(1, 30, kernel_size=(1, 3, 30), stride=(1, 1, 1)) ) ) (dropout_feature): Dropout(p=0.5) (rnn_layer): RNN( (rnn): LSTM(130, 100, bidirectional=True) ) (dropout_rnn): Dropout(p=0.5) (crf_layer): CRF() (hidden2tag): Linear(in_features=200, out_features=8, bias=True) ) learning rate: 0.015 Epoch 1 / 1000: 557 / 557 Traceback (most recent call last): File "G:/phd/8.8/SLTK-master/main.py", line 584, in main() File "G:/phd/8.8/SLTK-master/main.py", line 578, in main train_model(configs) File "G:/phd/8.8/SLTK-master/main.py", line 539, in train_model model_trainer.fit() File "G:\phd\8.8\SLTK-master\sltk\train\sequence_labeling_trainer.py", line 88, in fit logits = self.model(**feed_tensor_dict) File "C:\Users\ma\AppData\Local\Programs\Python\Python35\lib\site-packages\torch\nn\modules\module.py", line 477, in call result = self.forward(*input, **kwargs) File "G:\phd\8.8\SLTK-master\sltk\nn\modules\sequence_labeling_model.py", line 130, in forward word_feature = torch.cat([word_feature, char_feature], 2) RuntimeError: invalid argument 0: Tensors must have same number of dimensions: got 3 and 2 at c:\new-builder_2\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:3607
./data/output.txt
word
./data/resources/glove.6B.100d.txt
./data/output.txt.hdf5
不是很明白,谢谢您的指点。
The text was updated successfully, but these errors were encountered:
您好,问题虽然没解决,但是在mac上没有问题,正常运行。非常感谢共享代码。
Sorry, something went wrong.
No branches or pull requests
您好,我用自己的文件测试时报错。文件只有两列 word tag 所以配置文件用的word.yml,数据原本是BIO标注,用您的工具转换成BIESO,非常感谢! torch 0.4.1
错误信息如下:
读取文件...
./data/output.txt
: 619./data/output.txt
: 619抽取预训练词向量...
特征
word
使用预训练词向量./data/resources/glove.6B.100d.txt
:C:\Users\ma\AppData\Local\Programs\Python\Python35\lib\site-packages\gensim\utils.py:1209: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
精确匹配: 2038 / 2715
模糊匹配: 356 / 2715
OOV: 321 / 2715
convert data to hdf5...
./data/output.txt.hdf5
: 619./data/output.txt.hdf5
: 619SLModel(
(word_feature_layer): WordFeature(
(feature_embedding_list): ModuleList(
(0): Embedding(2716, 100)
)
)
(char_feature_layer): CharFeature(
(char_embedding): Embedding(64, 30)
(char_encoders): ModuleList(
(0): Conv3d(1, 30, kernel_size=(1, 3, 30), stride=(1, 1, 1))
)
)
(dropout_feature): Dropout(p=0.5)
(rnn_layer): RNN(
(rnn): LSTM(130, 100, bidirectional=True)
)
(dropout_rnn): Dropout(p=0.5)
(crf_layer): CRF()
(hidden2tag): Linear(in_features=200, out_features=8, bias=True)
)
learning rate: 0.015
Epoch 1 / 1000: 557 / 557
Traceback (most recent call last):
File "G:/phd/8.8/SLTK-master/main.py", line 584, in
main()
File "G:/phd/8.8/SLTK-master/main.py", line 578, in main
train_model(configs)
File "G:/phd/8.8/SLTK-master/main.py", line 539, in train_model
model_trainer.fit()
File "G:\phd\8.8\SLTK-master\sltk\train\sequence_labeling_trainer.py", line 88, in fit
logits = self.model(**feed_tensor_dict)
File "C:\Users\ma\AppData\Local\Programs\Python\Python35\lib\site-packages\torch\nn\modules\module.py", line 477, in call
result = self.forward(*input, **kwargs)
File "G:\phd\8.8\SLTK-master\sltk\nn\modules\sequence_labeling_model.py", line 130, in forward
word_feature = torch.cat([word_feature, char_feature], 2)
RuntimeError: invalid argument 0: Tensors must have same number of dimensions: got 3 and 2 at c:\new-builder_2\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:3607
不是很明白,谢谢您的指点。
The text was updated successfully, but these errors were encountered: