forked from abhshkdz/neural-vqa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
381 lines (305 loc) · 13.6 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
--[[
Torch implementation of the VIS + LSTM model from the paper
'Exploring Models and Data for Image Question Answering'
by Mengye Ren, Ryan Kiros & Richard Zemel.
This implementation passes the question embeddings
first and then the image embeddings into the LSTM,
and does a softmax over the answer vocabulary.
]]--
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
local utils = require 'utils.misc'
local DataLoader = require 'utils.DataLoader'
local LSTM = require 'lstm'
cmd = torch.CmdLine()
cmd:text('Options')
-- model params
cmd:option('-rnn_size', 512, 'Size of LSTM internal state')
cmd:option('-num_layers', 2, 'Number of layers in LSTM')
cmd:option('-embedding_size', 512, 'Size of word embeddings')
-- optimization
cmd:option('-learning_rate', 4e-4, 'Learning rate')
cmd:option('-learning_rate_decay', 0.95, 'Learning rate decay')
cmd:option('-learning_rate_decay_after', 15, 'In number of epochs, when to start decaying the learning rate')
cmd:option('-alpha', 0.8, 'alpha for adam')
cmd:option('-beta', 0.999, 'beta used for adam')
cmd:option('-epsilon', 1e-8, 'epsilon that goes into denominator for smoothing')
cmd:option('-batch_size', 200, 'Batch size')
cmd:option('-max_epochs', 50, 'Number of full passes through the training data')
cmd:option('-dropout', 0.5, 'Dropout')
cmd:option('-init_from', '', 'Initialize network parameters from checkpoint at this path')
-- bookkeeping
cmd:option('-seed', 981723, 'Torch manual random number generator seed')
cmd:option('-save_every', 1000, 'No. of iterations after which to checkpoint')
cmd:option('-train_fc7_file', 'data/train_fc7.t7', 'Path to fc7 features of training set')
cmd:option('-train_fc7_image_id_file', 'data/train_fc7_image_id.t7', 'Path to fc7 image ids of training set')
cmd:option('-val_fc7_file', 'data/val_fc7.t7', 'Path to fc7 features of validation set')
cmd:option('-val_fc7_image_id_file', 'data/val_fc7_image_id.t7', 'Path to fc7 image ids of validation set')
cmd:option('-data_dir', 'data', 'Data directory')
cmd:option('-checkpoint_dir', 'checkpoints', 'Checkpoint directory')
cmd:option('-savefile', 'vqa', 'Filename to save checkpoint to')
-- gpu/cpu
cmd:option('-gpuid', -1, '0-indexed id of GPU to use. -1 = CPU')
-- parse command-line parameters
opt = cmd:parse(arg or {})
print(opt)
torch.manualSeed(opt.seed)
-- gpu stuff
if opt.gpuid >= 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then print('package cunn not found!') end
if not ok2 then print('package cutorch not found!') end
if ok and ok2 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
cutorch.setDevice(opt.gpuid + 1) -- torch is 1-indexed
cutorch.manualSeed(opt.seed)
else
print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.')
print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.')
print('Falling back to CPU mode')
opt.gpuid = -1
end
end
-- initialize the data loader
-- checks if .t7 data files exist
-- if they don't or if they're old,
-- they're created from scratch and loaded
local loader = DataLoader.create(opt.data_dir, opt.batch_size, opt)
-- create the directory for saving snapshots of model at different times during training
if not path.exists(opt.checkpoint_dir) then lfs.mkdir(opt.checkpoint_dir) end
local do_random_init = true
if string.len(opt.init_from) > 0 then
-- initializing model from checkpoint
print('Loading model from checkpoint ' .. opt.init_from)
local checkpoint = torch.load(opt.init_from)
protos = checkpoint.protos
do_random_init = false
else
-- model definition
-- components: ltw, lti, lstm and sm
protos = {}
-- ltw: lookup table + dropout for question words
-- each word of the question gets mapped to its index in vocabulary
-- and then is passed through ltw to get a vector of size `embedding_size`
-- lookup table dimensions are `vocab_size` x `embedding_size`
protos.ltw = nn.Sequential()
protos.ltw:add(nn.LookupTable(loader.q_vocab_size+1, opt.embedding_size))
protos.ltw:add(nn.Dropout(opt.dropout))
-- lti: fully connected layer + dropout for image features
-- activations from the last fully connected layer of the deep convnet (VGG in this case)
-- are passed through lti to get a vector of `embedding_size`
-- linear layer dimensions are 4096 (size of fc7 layer) x `embedding_size`
protos.lti = nn.Sequential()
protos.lti:add(nn.Linear(4096, opt.embedding_size))
protos.lti:add(nn.Tanh())
protos.lti:add(nn.Dropout(opt.dropout))
-- lstm: long short-term memory cell which takes a vector of size `embedding_size` at every time step
-- hidden state h_t of LSTM cell in first layer is passed as input x_t of cell in second layer and so on.
protos.lstm = LSTM.create(opt.embedding_size, opt.rnn_size, opt.num_layers)
-- sm: linear layer + softmax over the answer vocabulary
-- linear layer dimensions are `rnn_size` x `answer_vocab_size`
protos.sm = nn.Sequential()
protos.sm:add(nn.Linear(opt.rnn_size, loader.a_vocab_size))
protos.sm:add(nn.LogSoftMax())
-- negative log-likelihood loss
protos.criterion = nn.ClassNLLCriterion()
-- pass over the model to gpu
if opt.gpuid >= 0 then
protos.ltw = protos.ltw:cuda()
protos.lti = protos.lti:cuda()
protos.lstm = protos.lstm:cuda()
protos.sm = protos.sm:cuda()
protos.criterion = protos.criterion:cuda()
end
end
-- put all trainable model parameters into one flattened parameters tensor
params, grad_params = utils.combine_all_parameters(protos.lti, protos.lstm, protos.sm)
print('Parameters: ' .. params:size(1))
print('Batches: ' .. loader.batch_data.train.nbatches)
-- initialize model parameters
if do_random_init then
params:uniform(-0.08, 0.08)
end
-- make clones of the LSTM model that shared parameters for subsequent timesteps (unrolling)
lstm_clones = {}
lstm_clones = utils.clone_many_times(protos.lstm, loader.q_max_length + 1)
-- initialize h_0 and c_0 of LSTM to zero tensors and store in `init_state`
init_state = {}
for L = 1, opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 then h_init = h_init:cuda() end
table.insert(init_state, h_init:clone())
table.insert(init_state, h_init:clone())
end
-- make a clone of `init_state` as it's going to be modified later
local init_state_global = utils.clone_list(init_state)
-- closure to calculate accuracy over validation set
feval_val = function(max_batches)
count = 0
n = loader.batch_data.val.nbatches
-- set `n` to `max_batches` if provided
if max_batches ~= nil then n = math.min(n, max_batches) end
-- set to evaluation mode for dropout to work properly
protos.ltw:evaluate()
protos.lti:evaluate()
for i = 1, n do
-- load question batch, answer batch and image features batch
q_batch, a_batch, i_batch = loader:next_batch('val')
-- 1st index of `nn.LookupTable` is reserved for zeros
q_batch = q_batch + 1
-- forward the question features through ltw
qf = protos.ltw:forward(q_batch)
-- forward the image features through lti
imf = protos.lti:forward(i_batch)
-- convert to CudaTensor if using gpu
if opt.gpuid >= 0 then
imf = imf:cuda()
end
-- set the state at 0th time step of LSTM
rnn_state = {[0] = init_state_global}
-- LSTM forward pass for question features
for t = 1, loader.q_max_length do
lst = lstm_clones[t]:forward{qf:select(2,t), unpack(rnn_state[t-1])}
-- at every time step, set the rnn state (h_t, c_t) to be passed as input in next time step
rnn_state[t] = {}
for i = 1, #init_state do table.insert(rnn_state[t], lst[i]) end
end
-- after completing the unrolled LSTM forward pass with question features, forward the image features
lst = lstm_clones[loader.q_max_length + 1]:forward{imf, unpack(rnn_state[loader.q_max_length])}
-- forward the hidden state at the last time step to get softmax over answers
prediction = protos.sm:forward(lst[#lst])
-- count number of correct answers
_, idx = prediction:max(2)
for j = 1, opt.batch_size do
if idx[j][1] == a_batch[j] then
count = count + 1
end
end
end
-- set to training mode once done with validation
protos.ltw:training()
protos.lti:training()
-- return accuracy
return count / (n * opt.batch_size)
end
-- closure to run a forward and backward pass and return loss and gradient parameters
feval = function(x)
-- get latest parameters
if x ~= params then
params:copy(x)
end
grad_params:zero()
-- load question batch, answer batch and image features batch
q_batch, a_batch, i_batch = loader:next_batch()
-- slightly hackish; 1st index of `nn.LookupTable` is reserved for zeros
q_batch = q_batch + 1
-- forward the question features through ltw
qf = protos.ltw:forward(q_batch)
-- forward the image features through lti
imf = protos.lti:forward(i_batch)
-- convert to CudaTensor if using gpu
if opt.gpuid >= 0 then
imf = imf:cuda()
end
------------ forward pass ------------
-- set initial loss
loss = 0
-- set the state at 0th time step of LSTM
rnn_state = {[0] = init_state_global}
-- LSTM forward pass for question features
for t = 1, loader.q_max_length do
lst = lstm_clones[t]:forward{qf:select(2,t), unpack(rnn_state[t-1])}
-- at every time step, set the rnn state (h_t, c_t) to be passed as input in next time step
rnn_state[t] = {}
for i = 1, #init_state do table.insert(rnn_state[t], lst[i]) end
end
-- after completing the unrolled LSTM forward pass with question features, forward the image features
lst = lstm_clones[loader.q_max_length + 1]:forward{imf, unpack(rnn_state[loader.q_max_length])}
-- forward the hidden state at the last time step to get softmax over answers
prediction = protos.sm:forward(lst[#lst])
-- calculate loss
loss = protos.criterion:forward(prediction, a_batch)
------------ backward pass ------------
-- backprop through loss and softmax
dloss = protos.criterion:backward(prediction, a_batch)
doutput_t = protos.sm:backward(lst[#lst], dloss)
-- set internal state of LSTM (starting from last time step)
drnn_state = {[loader.q_max_length + 1] = utils.clone_list(init_state, true)}
drnn_state[loader.q_max_length + 1][opt.num_layers * 2] = doutput_t
-- backprop for last time step (image features)
dlst = lstm_clones[loader.q_max_length + 1]:backward({imf, unpack(rnn_state[loader.q_max_length])}, drnn_state[loader.q_max_length + 1])
-- backprop into image linear layer
protos.lti:backward(i_batch, dlst[1])
-- set LSTM state
drnn_state[loader.q_max_length] = {}
for i,v in pairs(dlst) do
if i > 1 then
drnn_state[loader.q_max_length][i-1] = v
end
end
dqf = torch.Tensor(qf:size()):zero()
if opt.gpuid >= 0 then
dqf = dqf:cuda()
end
-- backprop into the LSTM for rest of the time steps
for t = loader.q_max_length, 1, -1 do
dlst = lstm_clones[t]:backward({qf:select(2, t), unpack(rnn_state[t-1])}, drnn_state[t])
dqf:select(2, t):copy(dlst[1])
drnn_state[t-1] = {}
for i,v in pairs(dlst) do
if i > 1 then
drnn_state[t-1][i-1] = v
end
end
end
-- zero gradient buffers of lookup table, backprop into it and update parameters
protos.ltw:zeroGradParameters()
protos.ltw:backward(q_batch, dqf)
protos.ltw:updateParameters(opt.learning_rate)
-- clip gradient element-wise
grad_params:clamp(-5, 5)
return loss, grad_params
end
-- optim state with ADAM parameters
local optim_state = {learningRate = opt.learning_rate, alpha = opt.alpha, beta = opt.beta, epsilon = opt.epsilon}
-- train / val loop!
losses = {}
iterations = opt.max_epochs * loader.batch_data.train.nbatches
print('Max iterations: ' .. iterations)
lloss = 0
for i = 1, iterations do
_, local_loss = optim.adam(feval, params, optim_state)
losses[#losses + 1] = local_loss[1]
lloss = lloss + local_loss[1]
local epoch = i / loader.batch_data.train.nbatches
if i%10 == 0 then
print('epoch ' .. epoch .. ' loss ' .. lloss / 10)
lloss = 0
end
-- Decay learning rate occasionally
if i % loader.batch_data.train.nbatches == 0 and opt.learning_rate_decay < 1 then
if epoch >= opt.learning_rate_decay_after then
local decay_factor = opt.learning_rate_decay
optim_state.learningRate = optim_state.learningRate * decay_factor -- decay it
print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate)
end
end
-- Calculate validation accuracy and save model snapshot
if i % opt.save_every == 0 or i == iterations then
print('Checkpointing. Calculating validation accuracy..')
local val_acc = feval_val()
local savefile = string.format('%s/%s_epoch%.2f_%.4f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_acc)
print('Saving checkpoint to ' .. savefile)
local checkpoint = {}
checkpoint.opt = opt
checkpoint.protos = protos
checkpoint.vocab_size = loader.q_vocab_size
torch.save(savefile, checkpoint)
end
if i%10 == 0 then
collectgarbage()
end
end