forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_micronet.py
528 lines (453 loc) · 17.3 KB
/
rec_micronet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/liyunsheng13/micronet/blob/main/backbone/micronet.py
https://github.com/liyunsheng13/micronet/blob/main/backbone/activation.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
from ppocr.modeling.backbones.det_mobilenet_v3 import make_divisible
M0_cfgs = [
# s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r
[2, 1, 8, 3, 2, 2, 0, 4, 8, 2, 2, 2, 0, 1, 1],
[2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 2, 1, 1],
[2, 1, 16, 5, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1],
[1, 1, 32, 5, 1, 4, 4, 4, 32, 4, 4, 2, 2, 1, 1],
[2, 1, 64, 5, 1, 4, 8, 8, 64, 8, 8, 2, 2, 1, 1],
[1, 1, 96, 3, 1, 4, 8, 8, 96, 8, 8, 2, 2, 1, 2],
[1, 1, 384, 3, 1, 4, 12, 12, 0, 0, 0, 2, 2, 1, 2],
]
M1_cfgs = [
# s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
[2, 1, 8, 3, 2, 2, 0, 6, 8, 2, 2, 2, 0, 1, 1],
[2, 1, 16, 3, 2, 2, 0, 8, 16, 4, 4, 2, 2, 1, 1],
[2, 1, 16, 5, 2, 2, 0, 16, 16, 4, 4, 2, 2, 1, 1],
[1, 1, 32, 5, 1, 6, 4, 4, 32, 4, 4, 2, 2, 1, 1],
[2, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 1],
[1, 1, 96, 3, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2],
[1, 1, 576, 3, 1, 6, 12, 12, 0, 0, 0, 2, 2, 1, 2],
]
M2_cfgs = [
# s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
[2, 1, 12, 3, 2, 2, 0, 8, 12, 4, 4, 2, 0, 1, 1],
[2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 2, 2, 1, 1],
[1, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 2, 2, 1, 1],
[2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 2, 2, 1, 1],
[1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 2, 2, 1, 2],
[1, 1, 64, 5, 1, 6, 8, 8, 64, 8, 8, 2, 2, 1, 2],
[2, 1, 96, 5, 1, 6, 8, 8, 96, 8, 8, 2, 2, 1, 2],
[1, 1, 128, 3, 1, 6, 12, 12, 128, 8, 8, 2, 2, 1, 2],
[1, 1, 768, 3, 1, 6, 16, 16, 0, 0, 0, 2, 2, 1, 2],
]
M3_cfgs = [
# s, n, c, ks, c1, c2, g1, g2, c3, g3, g4
[2, 1, 16, 3, 2, 2, 0, 12, 16, 4, 4, 0, 2, 0, 1],
[2, 1, 24, 3, 2, 2, 0, 16, 24, 4, 4, 0, 2, 0, 1],
[1, 1, 24, 3, 2, 2, 0, 24, 24, 4, 4, 0, 2, 0, 1],
[2, 1, 32, 5, 1, 6, 6, 6, 32, 4, 4, 0, 2, 0, 1],
[1, 1, 32, 5, 1, 6, 8, 8, 32, 4, 4, 0, 2, 0, 2],
[1, 1, 64, 5, 1, 6, 8, 8, 48, 8, 8, 0, 2, 0, 2],
[1, 1, 80, 5, 1, 6, 8, 8, 80, 8, 8, 0, 2, 0, 2],
[1, 1, 80, 5, 1, 6, 10, 10, 80, 8, 8, 0, 2, 0, 2],
[1, 1, 120, 5, 1, 6, 10, 10, 120, 10, 10, 0, 2, 0, 2],
[1, 1, 120, 5, 1, 6, 12, 12, 120, 10, 10, 0, 2, 0, 2],
[1, 1, 144, 3, 1, 6, 12, 12, 144, 12, 12, 0, 2, 0, 2],
[1, 1, 432, 3, 1, 3, 12, 12, 0, 0, 0, 0, 2, 0, 2],
]
def get_micronet_config(mode):
return eval(mode + '_cfgs')
class MaxGroupPooling(nn.Layer):
def __init__(self, channel_per_group=2):
super(MaxGroupPooling, self).__init__()
self.channel_per_group = channel_per_group
def forward(self, x):
if self.channel_per_group == 1:
return x
# max op
b, c, h, w = x.shape
# reshape
y = paddle.reshape(x, [b, c // self.channel_per_group, -1, h, w])
out = paddle.max(y, axis=2)
return out
class SpatialSepConvSF(nn.Layer):
def __init__(self, inp, oups, kernel_size, stride):
super(SpatialSepConvSF, self).__init__()
oup1, oup2 = oups
self.conv = nn.Sequential(
nn.Conv2D(
inp,
oup1, (kernel_size, 1), (stride, 1), (kernel_size // 2, 0),
bias_attr=False,
groups=1),
nn.BatchNorm2D(oup1),
nn.Conv2D(
oup1,
oup1 * oup2, (1, kernel_size), (1, stride),
(0, kernel_size // 2),
bias_attr=False,
groups=oup1),
nn.BatchNorm2D(oup1 * oup2),
ChannelShuffle(oup1), )
def forward(self, x):
out = self.conv(x)
return out
class ChannelShuffle(nn.Layer):
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
b, c, h, w = x.shape
channels_per_group = c // self.groups
# reshape
x = paddle.reshape(x, [b, self.groups, channels_per_group, h, w])
x = paddle.transpose(x, (0, 2, 1, 3, 4))
out = paddle.reshape(x, [b, -1, h, w])
return out
class StemLayer(nn.Layer):
def __init__(self, inp, oup, stride, groups=(4, 4)):
super(StemLayer, self).__init__()
g1, g2 = groups
self.stem = nn.Sequential(
SpatialSepConvSF(inp, groups, 3, stride),
MaxGroupPooling(2) if g1 * g2 == 2 * oup else nn.ReLU6())
def forward(self, x):
out = self.stem(x)
return out
class DepthSpatialSepConv(nn.Layer):
def __init__(self, inp, expand, kernel_size, stride):
super(DepthSpatialSepConv, self).__init__()
exp1, exp2 = expand
hidden_dim = inp * exp1
oup = inp * exp1 * exp2
self.conv = nn.Sequential(
nn.Conv2D(
inp,
inp * exp1, (kernel_size, 1), (stride, 1),
(kernel_size // 2, 0),
bias_attr=False,
groups=inp),
nn.BatchNorm2D(inp * exp1),
nn.Conv2D(
hidden_dim,
oup, (1, kernel_size),
1, (0, kernel_size // 2),
bias_attr=False,
groups=hidden_dim),
nn.BatchNorm2D(oup))
def forward(self, x):
x = self.conv(x)
return x
class GroupConv(nn.Layer):
def __init__(self, inp, oup, groups=2):
super(GroupConv, self).__init__()
self.inp = inp
self.oup = oup
self.groups = groups
self.conv = nn.Sequential(
nn.Conv2D(
inp, oup, 1, 1, 0, bias_attr=False, groups=self.groups[0]),
nn.BatchNorm2D(oup))
def forward(self, x):
x = self.conv(x)
return x
class DepthConv(nn.Layer):
def __init__(self, inp, oup, kernel_size, stride):
super(DepthConv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2D(
inp,
oup,
kernel_size,
stride,
kernel_size // 2,
bias_attr=False,
groups=inp),
nn.BatchNorm2D(oup))
def forward(self, x):
out = self.conv(x)
return out
class DYShiftMax(nn.Layer):
def __init__(self,
inp,
oup,
reduction=4,
act_max=1.0,
act_relu=True,
init_a=[0.0, 0.0],
init_b=[0.0, 0.0],
relu_before_pool=False,
g=None,
expansion=False):
super(DYShiftMax, self).__init__()
self.oup = oup
self.act_max = act_max * 2
self.act_relu = act_relu
self.avg_pool = nn.Sequential(nn.ReLU() if relu_before_pool == True else
nn.Sequential(), nn.AdaptiveAvgPool2D(1))
self.exp = 4 if act_relu else 2
self.init_a = init_a
self.init_b = init_b
# determine squeeze
squeeze = make_divisible(inp // reduction, 4)
if squeeze < 4:
squeeze = 4
self.fc = nn.Sequential(
nn.Linear(inp, squeeze),
nn.ReLU(), nn.Linear(squeeze, oup * self.exp), nn.Hardsigmoid())
if g is None:
g = 1
self.g = g[1]
if self.g != 1 and expansion:
self.g = inp // self.g
self.gc = inp // self.g
index = paddle.to_tensor([range(inp)])
index = paddle.reshape(index, [1, inp, 1, 1])
index = paddle.reshape(index, [1, self.g, self.gc, 1, 1])
indexgs = paddle.split(index, [1, self.g - 1], axis=1)
indexgs = paddle.concat((indexgs[1], indexgs[0]), axis=1)
indexs = paddle.split(indexgs, [1, self.gc - 1], axis=2)
indexs = paddle.concat((indexs[1], indexs[0]), axis=2)
self.index = paddle.reshape(indexs, [inp])
self.expansion = expansion
def forward(self, x):
x_in = x
x_out = x
b, c, _, _ = x_in.shape
y = self.avg_pool(x_in)
y = paddle.reshape(y, [b, c])
y = self.fc(y)
y = paddle.reshape(y, [b, self.oup * self.exp, 1, 1])
y = (y - 0.5) * self.act_max
n2, c2, h2, w2 = x_out.shape
x2 = paddle.to_tensor(x_out.numpy()[:, self.index.numpy(), :, :])
if self.exp == 4:
temp = y.shape
a1, b1, a2, b2 = paddle.split(y, temp[1] // self.oup, axis=1)
a1 = a1 + self.init_a[0]
a2 = a2 + self.init_a[1]
b1 = b1 + self.init_b[0]
b2 = b2 + self.init_b[1]
z1 = x_out * a1 + x2 * b1
z2 = x_out * a2 + x2 * b2
out = paddle.maximum(z1, z2)
elif self.exp == 2:
temp = y.shape
a1, b1 = paddle.split(y, temp[1] // self.oup, axis=1)
a1 = a1 + self.init_a[0]
b1 = b1 + self.init_b[0]
out = x_out * a1 + x2 * b1
return out
class DYMicroBlock(nn.Layer):
def __init__(self,
inp,
oup,
kernel_size=3,
stride=1,
ch_exp=(2, 2),
ch_per_group=4,
groups_1x1=(1, 1),
depthsep=True,
shuffle=False,
activation_cfg=None):
super(DYMicroBlock, self).__init__()
self.identity = stride == 1 and inp == oup
y1, y2, y3 = activation_cfg['dy']
act_reduction = 8 * activation_cfg['ratio']
init_a = activation_cfg['init_a']
init_b = activation_cfg['init_b']
t1 = ch_exp
gs1 = ch_per_group
hidden_fft, g1, g2 = groups_1x1
hidden_dim2 = inp * t1[0] * t1[1]
if gs1[0] == 0:
self.layers = nn.Sequential(
DepthSpatialSepConv(inp, t1, kernel_size, stride),
DYShiftMax(
hidden_dim2,
hidden_dim2,
act_max=2.0,
act_relu=True if y2 == 2 else False,
init_a=init_a,
reduction=act_reduction,
init_b=init_b,
g=gs1,
expansion=False) if y2 > 0 else nn.ReLU6(),
ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(),
ChannelShuffle(hidden_dim2 // 2)
if shuffle and y2 != 0 else nn.Sequential(),
GroupConv(hidden_dim2, oup, (g1, g2)),
DYShiftMax(
oup,
oup,
act_max=2.0,
act_relu=False,
init_a=[1.0, 0.0],
reduction=act_reduction // 2,
init_b=[0.0, 0.0],
g=(g1, g2),
expansion=False) if y3 > 0 else nn.Sequential(),
ChannelShuffle(g2) if shuffle else nn.Sequential(),
ChannelShuffle(oup // 2)
if shuffle and oup % 2 == 0 and y3 != 0 else nn.Sequential(), )
elif g2 == 0:
self.layers = nn.Sequential(
GroupConv(inp, hidden_dim2, gs1),
DYShiftMax(
hidden_dim2,
hidden_dim2,
act_max=2.0,
act_relu=False,
init_a=[1.0, 0.0],
reduction=act_reduction,
init_b=[0.0, 0.0],
g=gs1,
expansion=False) if y3 > 0 else nn.Sequential(), )
else:
self.layers = nn.Sequential(
GroupConv(inp, hidden_dim2, gs1),
DYShiftMax(
hidden_dim2,
hidden_dim2,
act_max=2.0,
act_relu=True if y1 == 2 else False,
init_a=init_a,
reduction=act_reduction,
init_b=init_b,
g=gs1,
expansion=False) if y1 > 0 else nn.ReLU6(),
ChannelShuffle(gs1[1]) if shuffle else nn.Sequential(),
DepthSpatialSepConv(hidden_dim2, (1, 1), kernel_size, stride)
if depthsep else
DepthConv(hidden_dim2, hidden_dim2, kernel_size, stride),
nn.Sequential(),
DYShiftMax(
hidden_dim2,
hidden_dim2,
act_max=2.0,
act_relu=True if y2 == 2 else False,
init_a=init_a,
reduction=act_reduction,
init_b=init_b,
g=gs1,
expansion=True) if y2 > 0 else nn.ReLU6(),
ChannelShuffle(hidden_dim2 // 4)
if shuffle and y1 != 0 and y2 != 0 else nn.Sequential()
if y1 == 0 and y2 == 0 else ChannelShuffle(hidden_dim2 // 2),
GroupConv(hidden_dim2, oup, (g1, g2)),
DYShiftMax(
oup,
oup,
act_max=2.0,
act_relu=False,
init_a=[1.0, 0.0],
reduction=act_reduction // 2
if oup < hidden_dim2 else act_reduction,
init_b=[0.0, 0.0],
g=(g1, g2),
expansion=False) if y3 > 0 else nn.Sequential(),
ChannelShuffle(g2) if shuffle else nn.Sequential(),
ChannelShuffle(oup // 2)
if shuffle and y3 != 0 else nn.Sequential(), )
def forward(self, x):
identity = x
out = self.layers(x)
if self.identity:
out = out + identity
return out
class MicroNet(nn.Layer):
"""
the MicroNet backbone network for recognition module.
Args:
mode(str): {'M0', 'M1', 'M2', 'M3'}
Four models are proposed based on four different computational costs (4M, 6M, 12M, 21M MAdds)
Default: 'M3'.
"""
def __init__(self, mode='M3', **kwargs):
super(MicroNet, self).__init__()
self.cfgs = get_micronet_config(mode)
activation_cfg = {}
if mode == 'M0':
input_channel = 4
stem_groups = 2, 2
out_ch = 384
activation_cfg['init_a'] = 1.0, 1.0
activation_cfg['init_b'] = 0.0, 0.0
elif mode == 'M1':
input_channel = 6
stem_groups = 3, 2
out_ch = 576
activation_cfg['init_a'] = 1.0, 1.0
activation_cfg['init_b'] = 0.0, 0.0
elif mode == 'M2':
input_channel = 8
stem_groups = 4, 2
out_ch = 768
activation_cfg['init_a'] = 1.0, 1.0
activation_cfg['init_b'] = 0.0, 0.0
elif mode == 'M3':
input_channel = 12
stem_groups = 4, 3
out_ch = 432
activation_cfg['init_a'] = 1.0, 0.5
activation_cfg['init_b'] = 0.0, 0.5
else:
raise NotImplementedError("mode[" + mode +
"_model] is not implemented!")
layers = [StemLayer(3, input_channel, stride=2, groups=stem_groups)]
for idx, val in enumerate(self.cfgs):
s, n, c, ks, c1, c2, g1, g2, c3, g3, g4, y1, y2, y3, r = val
t1 = (c1, c2)
gs1 = (g1, g2)
gs2 = (c3, g3, g4)
activation_cfg['dy'] = [y1, y2, y3]
activation_cfg['ratio'] = r
output_channel = c
layers.append(
DYMicroBlock(
input_channel,
output_channel,
kernel_size=ks,
stride=s,
ch_exp=t1,
ch_per_group=gs1,
groups_1x1=gs2,
depthsep=True,
shuffle=True,
activation_cfg=activation_cfg, ))
input_channel = output_channel
for i in range(1, n):
layers.append(
DYMicroBlock(
input_channel,
output_channel,
kernel_size=ks,
stride=1,
ch_exp=t1,
ch_per_group=gs1,
groups_1x1=gs2,
depthsep=True,
shuffle=True,
activation_cfg=activation_cfg, ))
input_channel = output_channel
self.features = nn.Sequential(*layers)
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
self.out_channels = make_divisible(out_ch)
def forward(self, x):
x = self.features(x)
x = self.pool(x)
return x