-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathimage_demo.py
54 lines (43 loc) · 1.6 KB
/
image_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : image_demo.py
# Author : YunYang1994
# Created date: 2019-07-12 13:07:27
# Description :
#
#================================================================
import cv2
import numpy as np
import core.utils as utils
import tensorflow as tf
from core.yolov3 import YOLOv3, decode
from PIL import Image
from core.config import cfg
input_size = 416
NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
image_path = "./docs/kite.jpg"
input_layer = tf.keras.layers.Input([input_size, input_size, 3])
feature_maps = YOLOv3(input_layer)
original_image = cv2.imread(image_path)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...].astype(np.float32)
bbox_tensors = []
for i, fm in enumerate(feature_maps):
bbox_tensor = decode(fm, i)
bbox_tensors.append(tf.reshape(bbox_tensor, (-1, 5+NUM_CLASS)))
bbox_tensors = tf.concat(bbox_tensors, axis=0)
model = tf.keras.Model(input_layer, bbox_tensors)
utils.load_weights(model, "./yolov3.weights")
model.summary()
pred_bbox = model.predict(image_data)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image.show()