-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
67 lines (54 loc) · 2.23 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
from tqdm import tqdm
import os
import PIL.Image as Image
import torch
from model import Net, Net2
parser = argparse.ArgumentParser(description='RecVis A3 evaluation script')
parser.add_argument('--data', type=str, default='bird_dataset', metavar='D',
help="folder where data is located. test_images/ need to be found in the folder")
parser.add_argument('--model', type=str, metavar='M',
help="the model file to be evaluated. Usually it is of the form model_X.pth")
parser.add_argument('--outfile', type=str, default='experiment/kaggle.csv', metavar='D',
help="name of the output csv file")
parser.add_argument('--cropped', type=int, default=1, metavar='K',
help="cropped or not")
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
state_dict = torch.load(args.model)
if state_dict['arch'] == 'efficientnet':
model = Net()
else:
model = Net2()
model.load_state_dict(state_dict['model_state_dict'])
model.eval()
if use_cuda:
print('Using GPU')
model.cuda()
else:
print('Using CPU')
from data import return_data_test_transforms
data_transforms = return_data_test_transforms(state_dict['input_size'])
test_dir = args.data + '/test_images/mistery_category'
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
output_file = open(args.outfile, "w")
output_file.write('id,{}\n'.format(','.join([str(i) for i in range(20)])))
for f in tqdm(os.listdir(test_dir)):
if 'jpg' in f:
data = data_transforms(pil_loader(test_dir + '/' + f))
data = data.view(1, data.size(0), data.size(1), data.size(2))
if use_cuda:
data = data.cuda()
output,_ = model(data)
pred = output.data.max(1, keepdim=True)[1]
pred_csv_row = "{}".format(f[:-4])
for out in output.data[0]:
pred_csv_row += ",{}".format(out.item())
pred_csv_row += "\n"
output_file.write(pred_csv_row)
output_file.close()
print("Succesfully wrote " + args.outfile + ', you can upload this file to the kaggle competition website')