-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_cams.py
155 lines (123 loc) · 5.16 KB
/
compute_cams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
import torch
from torch.nn import functional as F
from torchvision import transforms
import pytorch_lightning as pl
from utils.utils import init_params, seed_reproducer, mkdir
import utils.imutils as imutils
from settings import classes, n_classes
# Generation of CAMs inspired by: https://github.com/jiwoon-ahn/irn/blob/master/net/resnet50_cam.py
def get_strided_size(orig_size, stride):
return ((orig_size[0]-1)//stride+1, (orig_size[1]-1)//stride+1)
def get_strided_up_size(orig_size, stride):
strided_size = get_strided_size(orig_size, stride)
return strided_size[0]*stride, strided_size[1]*stride
if __name__ == "__main__":
# Make experiment reproducible
seed_reproducer(2020)
hparams = init_params()
# Create directory of where the class activation maps are generated
mkdir(hparams.cam_dir)
# Model
trainer = pl.Trainer(
gpus=hparams.gpus,
min_epochs=10,
max_epochs=hparams.max_epochs,
progress_bar_refresh_rate=0,
precision=hparams.precision,
num_sanity_val_steps=0,
profiler=True,
weights_summary=None,
#use_dp=True,
gradient_clip_val=hparams.gradient_clip_val
)
if hparams.knowledge_distillation:
from train_cam_clusters import System
else:
from train_cam import System
model = System(hparams, n_classes)
model.load_state_dict(torch.load(hparams.load_model)["state_dict"])
model.to("cuda")
model.eval()
# Data of which we want to compute the CAMs
data = pd.read_csv(hparams.data_cam_generation)
transform_data = transforms.Compose([
np.asarray,
imutils.normalize(),
imutils.HWC_to_CHW,
torch.from_numpy
])
transform_flip_data = transforms.Compose([
np.asarray,
imutils.HorizontalFlip(),
imutils.normalize(),
imutils.HWC_to_CHW,
torch.from_numpy
])
# Iterate over each image
for value in tqdm(data.values):
# Path and label of the images
filename = value[0]
label = torch.Tensor(value[1:].astype(int))
# Open the image
img_pil = Image.open(filename).convert('RGB')
width, height = img_pil.size
size = (height, width)
strided_size = get_strided_size(size, 4)
strided_up_size = get_strided_up_size(size, 16)
# Positive labels
valid_cat = torch.nonzero(label)[:, 0]
highres_cam_list = []
strided_cam_list = []
# TTA
#for scale in [1, 0.5, 0.8, 1.2]:
for scale in [1, 0.5, 1.5, 2]:
# No FLIP
img = img_pil.resize((int(width * scale) , int(height * scale)), Image.ANTIALIAS)
x = transform_data(img)
x = x.to("cuda")
with torch.no_grad():
outputs = model.forward_cam(x.unsqueeze(0))
strided_cam = torch.sum(torch.stack(
[F.interpolate(torch.unsqueeze(o, 0), strided_size, mode='bilinear', align_corners=False)[0] for o
in outputs]), 0)
highres_cam = [F.interpolate(torch.unsqueeze(o, 1), strided_up_size,
mode='bilinear', align_corners=False) for o in outputs]
highres_cam = torch.sum(torch.stack(highres_cam, 0), 0)[:, 0, :size[0], :size[1]]
strided_cam = strided_cam[valid_cat]
highres_cam = highres_cam[valid_cat]
strided_cam_list.append(strided_cam.detach().cpu().numpy())
highres_cam_list.append(highres_cam.detach().cpu().numpy())
del x
torch.cuda.empty_cache()
# FLIP
x = transform_flip_data(img)
x = x.to("cuda")
with torch.no_grad():
outputs = model.forward_cam(x.unsqueeze(0))
strided_cam = torch.sum(torch.stack(
[F.interpolate(torch.unsqueeze(o, 0), strided_size, mode='bilinear', align_corners=False)[0] for o
in outputs]), 0)
highres_cam = [F.interpolate(torch.unsqueeze(o, 1), strided_up_size,
mode='bilinear', align_corners=False) for o in outputs]
highres_cam = torch.sum(torch.stack(highres_cam, 0), 0)[:, 0, :size[0], :size[1]]
strided_cam = strided_cam[valid_cat]
highres_cam = highres_cam[valid_cat]
strided_cam_list.append(np.flip(strided_cam.detach().cpu().numpy(), axis=-1))
highres_cam_list.append(np.flip(highres_cam.detach().cpu().numpy(), axis=-1))
del x
torch.cuda.empty_cache()
# Average the obtained CAMs
strided_cam = np.sum(strided_cam_list, axis=0)
highres_cam = np.sum(highres_cam_list, axis=0)
strided_cam = strided_cam / (np.max(strided_cam, (1, 2), keepdims=True) + 1e-5)
highres_cam = highres_cam / (np.max(highres_cam, (1, 2), keepdims=True) + 1e-5)
# Save cams
np.save(os.path.join(hparams.cam_dir, os.path.splitext(os.path.basename(filename))[0] + '.npy'),
{"keys": valid_cat,
"cam": strided_cam,
"high_res": highres_cam})