-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
107 lines (84 loc) · 3.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from PIL import Image
import numpy as np
import os
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import utils.imutils as imutils
class VOCClassification(Dataset):
def __init__(self, data, transforms=None):
self.data = data
self.transforms = transforms
def __getitem__(self, index):
image = Image.open(self.data.loc[index, 'filename']).convert('RGB')
if self.transforms is not None:
image = self.transforms(image)
label = torch.FloatTensor(self.data.iloc[index, 1:].values.astype(np.int64))
return image, label
def __len__(self):
return len(self.data)
class VOCClassification_KD(Dataset):
def __init__(self, data, transforms=None):
self.data = data
self.transforms = transforms
def __getitem__(self, index):
filename = self.data.loc[index, 'filename']
image = Image.open(filename).convert('RGB')
if self.transforms is not None:
image = self.transforms(image)
label = torch.FloatTensor(self.data.iloc[index, 1:21].values.astype(np.int64))
features = torch.FloatTensor(self.data.iloc[index, 21:].values.astype(np.int64))
return image, label, features
def __len__(self):
return len(self.data)
def generate_transforms(image_size):
train_transform = transforms.Compose([
imutils.RandomResizeLong(256, 512),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1),
np.asarray,
imutils.normalize(),
imutils.RandomCrop(image_size[0]),
imutils.HWC_to_CHW,
torch.from_numpy
])
val_transform = transforms.Compose([
transforms.Resize((image_size[0], image_size[0])),
np.asarray,
imutils.normalize(),
imutils.HWC_to_CHW,
torch.from_numpy
])
return {"train_transforms": train_transform, "val_transforms": val_transform}
def generate_dataloaders(params, train_data, val_data, transforms, knowledge_distillation=0):
if knowledge_distillation:
train_dataset = VOCClassification_KD(
data=train_data, transforms=transforms["train_transforms"]
)
val_dataset = VOCClassification_KD(
data=val_data, transforms=transforms["val_transforms"]
)
else:
train_dataset = VOCClassification(
data=train_data, transforms=transforms["train_transforms"]
)
val_dataset = VOCClassification(
data=val_data, transforms=transforms["val_transforms"]
)
train_dataloader = DataLoader(
train_dataset,
batch_size=params.train_batch_size,
shuffle=True,
num_workers=params.num_workers,
pin_memory=True,
drop_last=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=params.val_batch_size,
shuffle=False,
num_workers=params.num_workers,
pin_memory=True,
drop_last=False,
)
return train_dataloader, val_dataloader