-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_weights.py
45 lines (38 loc) · 1.13 KB
/
save_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
import torch
from torch.nn import functional as F
from torchvision import transforms
import pytorch_lightning as pl
from utils.utils import init_params, seed_reproducer, mkdir
import utils.imutils as imutils
from settings import classes, n_classes
if __name__ == "__main__":
# Make experiment reproducible
seed_reproducer(2020)
hparams = init_params()
# Model
trainer = pl.Trainer(
gpus=hparams.gpus,
min_epochs=10,
max_epochs=hparams.max_epochs,
progress_bar_refresh_rate=0,
precision=hparams.precision,
num_sanity_val_steps=0,
profiler=True,
weights_summary=None,
#use_dp=True,
gradient_clip_val=hparams.gradient_clip_val
)
if hparams.knowledge_distillation:
from train_cam_clusters import System
else:
from train_cam import System
model = System(hparams, n_classes)
model.load_state_dict(torch.load(hparams.load_model)["state_dict"])
model.to("cuda")
model.eval()
torch.save(model.model.state_dict(), "model")