-
Notifications
You must be signed in to change notification settings - Fork 1
/
hw1.tex
254 lines (166 loc) · 5.27 KB
/
hw1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
\documentclass[12pt,letterpaper,boxed]{amspset}
% include this if you want to import graphics files with /includegraphics
\usepackage{graphicx}
% info for header block in upper right hand corner
\name{Ima G. Student}
\class{AMS 550.671 - Combinatorial Analysis}
\assignment{Homework \#1}
\duedate{09/19/2005}
\begin{document}
\problemlist{K. Bogart 1.1.1, 1.1.2, 1.1.8, 1.1.9, 1.1.13, 1.1.14, 1.1.16, 1.1.18, \\
1.2.1, 1.2.2, 1.2.8, 1.2.10, 1.2.12, 1.2.14, 1.2.15, 1.2.20}
\begin{problem}[1.1.1]
A city council with seven members must elect a mayor and vice-mayor
from among its members. In how many ways can the council choose these
officers?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.2]
In how many ways can you distribute three distinct pieces of fruit
among five children if no child can receive more than one? If any
child can receive any number?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.8]
A coffee machine allows you to choose your coffee either plain or with
single or double portions of sugar and/or cream. In how many ways can
you choose your coffee?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.9]
What is the number of 10 digit numbers with no two successive digits
equal? What is the number that have at least one pair of successive
digits equal.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.13]
A professor has six test questions. Three of them form a unit and must
be kept together in the order the professor has chosen. In how many
ways can the professor arrange the test questions?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.14]
Answer the equation of Exercise 13 if the three questions that are
kept together can be arranged in any order.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.16]
Use $Y - X$ to denote the set of elements of $Y$ not in $X$. If every
element of the set $X$ is an element of the set $Y$, apply the sum
principle to the sets $X$ and $Y - X$ to explain why
\[
| Y - X| = |Y| - |X|.
\]
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.1.18]
Stirling showed that $n!$ is approximately $\sqrt{2 \pi n} n^{n}
e^{-n}$. Using a computer or scientific calculator, determine the ratio
of $n!$ to this approximation for values of $n$ equal to multiples of
10 up to 50. For each Stirling approximation, multiply it by $1 +
\frac{1}{12n}$ and find the ratio of the result to $n!$.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.1]
Write down all the sets of ordered pairs that correspond to possible
functions from $\{ 0, 1 \}$ to $\{1, 2, 3 \}$.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.2]
Write down all the sets of ordered pairs that correspond to possible
functions from $\{ 1, 2, 3 \}$ to $\{0, 1 \}$.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.8]
Which of the following relations are functions? If not, why not?
\begin{itemize}
\item{(a)} $\{ (a,1), (b,2), (c,1)\}$
\item{(b)} $\{ (1,a), (2,b), (3,b), (1,c)\}$
\item{(c)} $\{ (-1,1), (0,0), (1,1), (2,4), (-2,4)\}$
\item{(d)} $\{ (1,-1), (0,0), (1,1), (4,2), (4,-2) \}$
\item{(e)} $\{ (0,0), (1,1), (4,2)\}$
\end{itemize}
\end{problem}
\begin{solution}
\begin{itemize}
\item{(a)}
\item{(b)}
\item{(c)}
\item{(d)}
\item{(e)}
\end{itemize}
\end{solution}
%%%
\begin{problem}[1.2.10]
How many functions from a four-element set to a five-element set are
not one-to-one? How many functions from a five-element set to a
four-element set are not one-to-one?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.12]
A group organizing a faculty-student tennis match must match five
faculty volunteers with five of the 12 students who volunteered to be
in the match. In how many ways can they do this?
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.14]
\begin{itemize}
\item{(a)} In how many ways can you pass out 10 different pieces of
candy to three children?
\item{(b)} What if each child must get at least one piece? (Hint: To
answer this question, ask yourself in how many distributions does one
child get candy? In how many distributions do exactly two children get
candy?)
\end{itemize}
\end{problem}
\begin{itemize}
\item{(a)}
\item{(b)}
\end{itemize}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.15 (optional)]
The inverse of a relation $R$, denoted by $R^{-1}$, is the set of all
ordered pairs $(y,x)$ such that $(x,y)$ is in $R$. Show that the
inverse relation of a function $f$ is a function (whose domain is some
subset of the range of $f$) if and only if $f$ is one-to-one. Show
that the inverse relation of a function $f$ is a function whose domain
is the range of $f$ if and only if $f$ is a bijection.
\end{problem}
\begin{solution}
\end{solution}
%%%
\begin{problem}[1.2.20 (optional)]
Show that if $S$ and $T$ are of the same size, then a function $f: S
\rightarrow T$ is onto if and only if it is one-to-one. Discuss what
this means about testing a function between two sets of the same size
to see if it is a bijection.
\end{problem}
\begin{solution}
\end{solution}
\end{document}