-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSample_Canny.py
376 lines (329 loc) · 13.5 KB
/
Sample_Canny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import numpy as np
import cv2
import matplotlib.pyplot as plt
from collections import deque
def convolution_1d(image, kernel):
'''
Performs convolution along x or y axis, based on kernel size.
Assumes input image is 1 channel (Grayscale)
Inputs:
image: H x W shape numpy array
kernel: K_H x K_W shape numpy array (for example, 3x1 for 1 dimensional filter for y-component)
Returns:
H x W Image convolved with kernel
'''
# Get kernel size
k_h, k_w = kernel.shape
# Get image size
i_h, i_w = image.shape
# filter for x-component
if k_h == 1:
# Pad image with zeros on left and right
pad_w = k_w // 2
padded_image = np.zeros((i_h, i_w + pad_w*2))
padded_image[ : , pad_w:-pad_w] = image
# Create output image
output_image = np.zeros((i_h, i_w))
# Convolve image with kernel
for i in range(i_h):
for j in range(i_w):
output_image[i, j] = np.sum(padded_image[i, j:j+k_w] * kernel)
# filter for y-component
elif k_w == 1:
# Pad image with zeros on up and down
pad_h = k_h // 2
padded_image = np.zeros((i_h + pad_h*2, i_w))
padded_image[pad_h:-pad_h, : ] = image
# Create output image
output_image = np.zeros((i_h, i_w))
# Convolve image with kernel
for i in range(i_h):
for j in range(i_w):
output_image[i, j] = np.sum(padded_image[i:i+k_h, j] * kernel.reshape(k_h))
return output_image
def gaussian_kernel(size=3, sigma=1):
'''
Creates Gaussian Kernel (1 Dimensional)
Inputs:
size: width of the filter
sigma: standard deviation
Returns a 1xN shape 1D gaussian kernel
'''
# Create 1*N Gaussian Kernel
kernel_1d = np.zeros((1, size))
# Fill the first row with values. e.g. [-1, 0, 1]
kernel_1d[0, : ] = np.linspace(-(size // 2), size // 2, size)
# Discritize the gaussian function
for i in range(size):
x = kernel_1d[0, i]
# The actual gaussian function
kernel_1d[0, i] = (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * np.square(x / sigma))
# Normalize kernel
kernel_1d[0, : ] = kernel_1d[0, : ] / np.sum(kernel_1d[0, : ])
return kernel_1d
def gaussian_first_derivative_kernel(size=3, sigma=1):
'''
Creates 1st derviative gaussian Kernel (1 Dimensional)
Inputs:
size: width of the filter
sigma: standard deviation
Returns a 1xN shape 1D 1st derivative gaussian kernel
'''
# Create 1*N matrix filled with zeros
kernel_1d = np.zeros((1, size))
kernel_1d[0,:] = np.linspace(-(size // 2), size // 2, size)
# Discritize the drivative of gaussian function with e.g. [-1, 0, 1]
for i in range(size):
x = kernel_1d[0, i]
# Derivatives of Gaussian = -x / np.square(sigma) * Gaussian
kernel_1d[0, i] = -x / np.square(sigma) * (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * np.square(x / sigma))
return kernel_1d
def non_max_suppression(magnitude, ori):
'''
Performs non-maxima suppression for given magnitude and orientation.
Inputs:
magnitude: H x W shape numpy array
ori: in radians, in the range [-pi, pi]
Return:
output with NMS applied.
'''
# Get image size
i_h, i_w = magnitude.shape
# convert orientation from radians to degrees [-180, 180]
angle = ori * 180. / np.pi
# cast to [0, 180], e.g. -315 -> 45. Only the line's orientation is enough
angle[angle < 0] += 180
# Create output image
output_image = np.zeros((i_h, i_w))
# find the max value in 3x3 window at current pixel's orientation
# be careful: the y axis is downward.
# 0 ---------> x
# |
# |
# V
# y
for i in range(i_h):
for j in range(i_w):
# 8 directions to go
up = 0 if i + 1 >= i_h else magnitude[i+1, j]
down = 0 if i - 1 < 0 else magnitude[i-1, j]
left = 0 if j - 1 < 0 else magnitude[i, j-1]
right = 0 if j + 1 >= i_w else magnitude[i, j+1]
up_left = 0 if i - 1 < 0 or j - 1 < 0 else magnitude[i-1, j-1]
up_right = 0 if i - 1 < 0 or j + 1 >= i_w else magnitude[i-1, j+1]
down_left = 0 if i + 1 <= i_h or j - 1 < 0 else magnitude[i+1, j-1]
down_right = 0 if i + 1 >= i_h or j + 1 >= i_w else magnitude[i+1, j+1]
theta = angle[i, j]
if theta < 45:
mag1 = theta / 45 * down_right + (45 - theta) / 45 * right
mag2 = theta / 45 * up_left + (45 - theta) / 45 * left
elif theta >= 45 and theta < 90:
thera_percent = (theta - 45) / 45
mag1 = thera_percent * down + (1 - thera_percent) * down_right
mag2 = thera_percent * up + (1 - thera_percent) * up_left
elif theta >= 90 and theta < 135:
thera_percent = (theta - 90) / 45
mag1 = thera_percent * down_left + (1 - thera_percent) * down
mag2 = thera_percent * up_right + (1 - thera_percent) * up
else: # theta >= 135
thera_percent = (theta - 135) / 45
mag1 = thera_percent * left + (1 - thera_percent) * down_left
mag2 = thera_percent * right + (1 - thera_percent) * up_right
mag = magnitude[i, j]
if mag > mag1 and mag > mag2:
output_image[i, j] = mag
return output_image
def non_max_suppression2(magnitude, ori):
'''
Old version, use 4 directions and no interpolation
'''
# Get image size
i_h, i_w = magnitude.shape
# convert orientation from radians to degrees [-180, 180]
ori = ori * 180. / np.pi
# cast to [0, 180], e.g. -315 -> 45. Only the line's orientation is enough
ori[ori < 0] += 180
# Create output image
output_image = np.zeros((i_h, i_w))
# find the max value in 3x3 window at current pixel's orientation
# 0 ---------> x
# |
# |
# V
# y
for i in range(i_h):
for j in range(i_w):
theta = ori[i, j]
mag = magnitude[i, j]
# if this is near a horizontal line, compare left and right pixels
if theta < 22.5 or theta > 157.5:
left = 0 if j - 1 < 0 else magnitude[i, j-1]
right = 0 if j + 1 >= i_w else magnitude[i, j+1]
if mag > left and mag > right:
output_image[i, j] = mag
# if this is near a vertical line, compare up and down pixels
elif theta > 67.5 and theta < 112.5:
up = 0 if i + 1 >= i_h else magnitude[i+1, j]
down = 0 if i - 1 < 0 else magnitude[i-1, j]
if mag > up and mag > down:
output_image[i, j] = mag
# if this is near a diagonal line
elif theta >= 22.5 and theta <= 67.5:
up_left = 0 if i - 1 < 0 or j - 1 < 0 else magnitude[i-1, j-1]
down_right = 0 if i + 1 >= i_h or j + 1 >= i_w else magnitude[i+1, j+1]
if mag > up_left and mag > down_right:
output_image[i, j] = mag
# if this is near a diagonal line
else: # theta >= 112.5 and theta <= 157.5:
up_right = 0 if i - 1 < 0 or j + 1 >= i_w else magnitude[i-1, j+1]
down_left = 0 if i + 1 <= i_h or j - 1 < 0 else magnitude[i+1, j-1]
if mag > up_right and mag > down_left:
output_image[i, j] = mag
return output_image
def iterative_BFS(img, i, j, low_threshold, high_treshold):
'''
Check if (i,j) connect to a strong pixel directly or indirectly via middle pixel.
use iterative BFS
Input:
img:
i, j: middle pixel, img[i, j] >= low_threshold and img[i, j] < high_threshold
low_threshold:
high_threshold:
Return:
A set of `seen` pixels and a boolean value, which
If True,
current (i,j) and `seen` are strong pixels
else
current (i,j) and `seen` are weak pixels.
'''
i_h, i_w = img.shape
# Use deque to store `middle` pixels we need to check
# Only connected `middle` pixels are stored in deque
q = deque()
q.append((i, j))
# Remember seen `middle`` pixels, avoid check it again
seen = set()
seen.add((i, j))
# Iterative `cicle` around a pixel in 8 ways, from inner circle to outer circle.
while len(q) > 0:
i, j = q.popleft()
# 4 directions to go: down -> right -> up -> left (0,1)(1,0)(0,-1)(-1,0)
offset1 = [0, 1, 0, -1, 0]
# Another 4 directions to go: downright -> downright -> downleft -> upleft (1,1)(1,-1)(-1,-1)(-1,1)
offset2 = [1, 1, -1, -1, 1]
# check connectoin in 8 ways
for k in range(4):
ti = i + offset1[k]
tj = j + offset1[k+1]
if ti >= 0 and ti < i_h and tj >= 0 and tj < i_w:
if (ti, tj) in seen:
pass
# when a pixel is strong, all seen pixels are strong
elif img[ti, tj] >= high_treshold:
return seen, True
elif img[ti, tj] >= low_threshold:
seen.add((ti, tj))
q.append((ti, tj))
ti = i + offset2[k]
tj = j + offset2[k+1]
if ti >= 0 and ti < i_h and tj >= 0 and tj < i_w:
if (ti, tj) in seen:
pass
elif img[ti, tj] >= high_treshold:
return seen, True
elif img[ti, tj] >= low_threshold:
seen.add((ti, tj))
q.append((ti, tj))
# no strong pixel found, all seen pixels are weak
return seen, False
def hysteresis_thresholding(img, low_ratio, high_ratio):
'''
Performs hysteresis thresholding for given image and low and high thresholds.
Returns output with hysteresis thresholding applied.
'''
# Get image size
i_h, i_w = img.shape
# Get low and high thresholds
low_threshold = np.max(img) * low_ratio
high_threshold = np.max(img) * high_ratio
# Create output image
output_image = np.zeros((i_h, i_w))
# Link to strong set
link_to_strong = set()
# Not strong set
not_strong = set()
for i in range(i_h):
for j in range(i_w):
# If pixel is strong, keep it
if img[i, j] >= high_threshold:
output_image[i, j] = 255
# If pixel is weak, check if it is linked to a strong pixel
elif img[i, j] >= low_threshold:
if (i, j) in link_to_strong:
output_image[i, j] = 255
elif (i, j) in not_strong:
pass
else:
seen_pixels, is_strong = iterative_BFS(img, i, j, low_threshold, high_threshold)
if is_strong:
output_image[i, j] = 255
link_to_strong.update(seen_pixels)
else:
not_strong.update(seen_pixels)
return output_image
def main():
# Initialize values
# You can choose any sigma values like 1, 0.5, 1.5, etc
sigma = 0.5
size = 11
# 1. Read the image in grayscale mode using opencv
I = cv2.imread(r'C:\Users\a\Downloads\CAP5415\22090.jpg', cv2.IMREAD_GRAYSCALE)
# 2. Create a one-dimensional gaussian kernel. Returns 1XN matrix
G = gaussian_kernel(size=size, sigma=sigma)
# Convolution of G and I
I_xx = convolution_1d(I, G)
I_yy = convolution_1d(I, G.T)
# 3. First Derivative of Gaussian
G_x = gaussian_first_derivative_kernel(size=size, sigma=sigma)
# 4. Convolve I with G_x in x and y direction
I_x_prime = convolution_1d(I, G_x)
I_y_prime = convolution_1d(I, G_x.T)
# 5. Compute magnitude
Mag = np.sqrt(np.square(I_x_prime) + np.square(I_y_prime))
# Compute orientation
# np.arctan2() returns radian, in the range [-pi, pi]. pi radians = 180 degrees.
Ori = np.arctan2(I_y_prime, I_x_prime)
# 6. Compute non-max suppression
M_nms = non_max_suppression(Mag, Ori)
# # convert to uint8 for display
# cv_Mag = (Mag / np.max(Mag) * 255).astype(np.uint8)
# cv_M_nms = (M_nms / np.max(M_nms) * 255).astype(np.uint8)
# window = cv2.namedWindow("Images", cv2.WINDOW_NORMAL)
# # cv2.imshow("Images", I)
# cv2.imshow("Images", np.hstack((cv_Mag, cv_M_nms)))
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# 7. Hysteresis thresholding
myCanny = hysteresis_thresholding(M_nms, 0.1, 0.2)
# use opencv's canny to compare the result
edge = cv2.Canny(I, 100, 200)
plt.subplot(231),plt.imshow(I_xx, cmap = 'gray')
plt.title('Gaussian along x Image'), plt.xticks([]), plt.yticks([])
plt.subplot(232),plt.imshow(I_yy,cmap = 'gray')
plt.title('Gaussian along y Image'), plt.xticks([]), plt.yticks([])
plt.subplot(233),plt.imshow(I_x_prime, cmap = 'gray')
plt.title('I_x_prime'), plt.xticks([]), plt.yticks([])
plt.subplot(234),plt.imshow(I_y_prime, cmap = 'gray')
plt.title('I_y_prime'), plt.xticks([]), plt.yticks([])
plt.subplot(235),plt.imshow(Mag, cmap = 'gray')
plt.title('Magnitude'), plt.xticks([]), plt.yticks([])
plt.subplot(236),plt.imshow(M_nms, cmap = 'gray')
plt.title('NMS'), plt.xticks([]), plt.yticks([])
plt.tight_layout()
plt.show()
plt.imshow(myCanny, cmap = 'gray')
plt.title('myCanny')
plt.tight_layout()
plt.show()
if __name__ == '__main__':
main()