-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference_hifiglot.py
193 lines (136 loc) · 7.43 KB
/
inference_hifiglot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import os
import argparse
import json
import torch
from neural_formant_synthesis.third_party.hifi_gan.env import AttrDict, build_env
#from neural_formant_synthesis.third_party.hifi_gan.models import discriminator_metrics
from neural_formant_synthesis.third_party.hifi_gan.utils import scan_checkpoint
from neural_formant_synthesis.glotnet.sigproc.lpc import LinearPredictor
from neural_formant_synthesis.glotnet.sigproc.emphasis import Emphasis
from neural_formant_synthesis.models import FM_Hifi_Generator, fm_config_obj, Envelope_wavenet, Envelope_conformer
from neural_formant_synthesis.feature_extraction import feature_extractor, Normaliser, MedianPool1d
from neural_formant_synthesis.models import SourceFilterFormantSynthesisGenerator
from neural_formant_synthesis.glotnet.sigproc.levinson import forward_levinson
import torchaudio as ta
import pandas as pd
from tqdm import tqdm
from glob import glob
torch.backends.cudnn.benchmark = True
def generate_wave_list(file_list, scale_list, a, h, fm_h):
torch.cuda.manual_seed(h.seed)
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
target_sr = h.sampling_rate
win_size = h.win_size
hop_size = h.hop_size
feat_extractor = feature_extractor(sr = target_sr,window_samples = win_size, step_samples = hop_size, formant_ceiling = 10000, max_formants = 4)
median_filter = MedianPool1d(kernel_size = 3, stride = 1, padding = 0, same = True)
pre_emphasis_cpu = Emphasis(alpha = h.pre_emph_coeff)
normalise_features = Normaliser(target_sr)
generator = SourceFilterFormantSynthesisGenerator(
fm_config=fm_h,
g_config=h,
pretrained_fm=None,
freeze_fm=False,
device=device)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
generator.load_generator_e2e_checkpoint(cp_g)
generator = generator.to(device)
generator.eval()
# Read files from list
for file in tqdm(file_list, total = len(file_list)):
# Read audio and resample if necessary
x, sample_rate = ta.load(file)
x = x[0:1].type(torch.DoubleTensor)
x = ta.functional.resample(x, sample_rate, target_sr)
# Get features using feature extractor
x_preemph = pre_emphasis_cpu(x.unsqueeze(0))
x_preemph = x_preemph.squeeze(0).squeeze(0)
formants, energy, centroid, tilt, pitch, voicing_flag,_, _,_ = feat_extractor(x_preemph)
# Parameter smoothing and length matching
formants = median_filter(formants.T.unsqueeze(1)).squeeze(1).T
pitch = pitch.squeeze(0)
voicing_flag = voicing_flag.squeeze(0)
# If pitch length is smaller than formants, pad pitch and voicing flag with last value
if pitch.size(0) < formants.size(0):
pitch = torch.nn.functional.pad(pitch, (0, formants.size(0) - pitch.size(0)), mode = 'constant', value = pitch[-1])
voicing_flag = torch.nn.functional.pad(voicing_flag, (0, formants.size(0) - voicing_flag.size(0)), mode = 'constant', value = voicing_flag[-1])
# If pitch length is larger than formants, truncate pitch and voicing flag
elif pitch.size(0) > formants.size(0):
pitch = pitch[:formants.size(0)]
voicing_flag = voicing_flag[:formants.size(0)]
# We can apply manipulation HERE
log_pitch = torch.log(pitch)
#pitch = pitch * scale_list[0]
for i in range(voicing_flag.size(0)):
if voicing_flag[i] == 1:
log_pitch[i] = log_pitch[i] + torch.log(torch.tensor(scale_list[0]))
formants[i,0] = formants[i,0] * scale_list[1]
formants[i,1] = formants[i,1] * scale_list[2]
formants[i,2] = formants[i,2] * scale_list[3]
formants[i,3] = formants[i,3] * scale_list[4]
# Normalise data
log_pitch, formants, tilt, centroid, energy = normalise_features(log_pitch, formants, tilt, centroid, energy)
#Create input data
#size --> (Batch, features, sequence)
norm_feat = torch.transpose(torch.cat((log_pitch.unsqueeze(1), formants, tilt.unsqueeze(1), centroid.unsqueeze(1), energy.unsqueeze(1), voicing_flag.unsqueeze(1)),dim = -1), 0, 1)
norm_feat = norm_feat.type(torch.FloatTensor).unsqueeze(0).to(device)
y_g_hat, _, _ = generator(norm_feat)
output_file = os.path.splitext(os.path.basename(file))[0] + '_wave_' + str(scale_list[0]) + '_' + str(scale_list[1]) + '_' + str(scale_list[2]) + '_' + str(scale_list[3]) + '_' + str(scale_list[4]) + '.wav'
output_orig = os.path.splitext(os.path.basename(file))[0] + '_orig.wav'
out_path = os.path.join(a.output_path, output_file)
out_orig_path = os.path.join(a.output_path, output_orig)
ta.save(out_path, y_g_hat.detach().cpu().squeeze(0), target_sr)
if not os.path.exists(out_orig_path):
ta.save(out_orig_path, x.type(torch.FloatTensor), target_sr)
def parse_file_list(list_file):
"""
Read text file with paths to the files to process.
"""
file1 = open(list_file, 'r')
lines = file1.read().splitlines()
return lines
def str_to_list(in_str):
return list(map(float, in_str.strip('[]').split(',')))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input_path', default = None, help="Path to directory containing files to process.")
parser.add_argument('--list_file', default = None, help="Text file containing list of files to process. Optional argument to use instead of input_path.")
parser.add_argument('--output_path', default='test_output', help="Path to directory to save processed files")
parser.add_argument('--config', default='', help="Path to HiFi-GAN config json file")
parser.add_argument('--fm_config', default='', help="Path to feature mapping model config json file")
parser.add_argument('--env_config', default='', help="Path to envelope estimation model config json file")
parser.add_argument('--audio_ext', default = '.wav', help="Extension of the audio files to process")
parser.add_argument('--checkpoint_path', help="Path to pre-trained HiFi-GAN model")
parser.add_argument('--feature_scale', help="List of scales for pitch and formant frequencies -- [F0, F1, F2, F3, F4]")
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
with open(a.fm_config) as f:
data = f.read()
json_fm_config = json.loads(data)
fm_h = AttrDict(json_fm_config)
# build_env(a.config, 'config.json', a.checkpoint_path)
if a.input_path is not None:
file_list = glob(os.path.join(a.input_path,'*' + a.audio_ext))
elif a.list_file is not None:
file_list = parse_file_list(a.list_file)
else:
raise ValueError('Input arguments should include either input_path or file_list')
if not os.path.exists(a.output_path):
os.makedirs(a.output_path, exist_ok=True)
scale_list = str_to_list(a.feature_scale)
if len(scale_list) != 5:
raise ValueError('The scaling vector must contain 5 features: [F0, F1, F2, F3, F4]')
torch.manual_seed(h.seed)
generate_wave_list(file_list, scale_list, a, h, fm_h)
if __name__ == '__main__':
main()