diff --git a/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp b/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp index bbd5005c44e3..547170cd5d8c 100644 --- a/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp +++ b/lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp @@ -46,7 +46,6 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP( Value constAlpha = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getF64FloatAttr(alpha)); - Value constBeta = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getF64FloatAttr(beta)); @@ -62,18 +61,16 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP( /*alpha=*/constOne); // Expression: min(1, alpha * x + beta) - Value constantOne = rewriter.create( - binder.getLoc(), rewriter.getI64IntegerAttr(1)); - Value oneTensor = createRank0Tensor(rewriter, binder.getLoc(), - resultType, constantOne); + Value oneTensor = + createRank0Tensor(rewriter, binder.getLoc(), resultType, constOne); Value minExpression = rewriter.create( binder.getLoc(), resultType, oneTensor, alphaMulXPlusBeta); // Expression: max(0, min(1, alpha * x + beta)) - Value constantZero = rewriter.create( - binder.getLoc(), rewriter.getI64IntegerAttr(0)); - Value zeroTensor = createRank0Tensor(rewriter, binder.getLoc(), - resultType, constantZero); + Value constZero = rewriter.create( + binder.getLoc(), rewriter.getF64FloatAttr(0.0)); + Value zeroTensor = + createRank0Tensor(rewriter, binder.getLoc(), resultType, constZero); rewriter.replaceOpWithNewOp( binder.op, resultType, zeroTensor, minExpression); return success(); diff --git a/test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir b/test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir index 58d33db41306..be07ac634de2 100644 --- a/test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir +++ b/test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir @@ -894,20 +894,18 @@ func.func @test_hardsigmoid_example(%arg0: !torch.vtensor<[3],f32>) -> !torch.vt // CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3],f32>, !torch.float -> !torch.vtensor<[3],f32> // CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00 // CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3],f32>, !torch.float, !torch.float -> !torch.vtensor<[3],f32> - // CHECK: %[[INT_1:.*]] = torch.constant.int 1 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6 - // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3],f32> -> !torch.vtensor<[3],f32> - // CHECK: %[[INT_0:.*]] = torch.constant.int 0 + // CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6 - // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: %[[RESULT:.*]] = torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3],f32> -> !torch.vtensor<[3],f32> // CHECK: return %[[RESULT:.*]] : !torch.vtensor<[3],f32> - %0 = torch.operator "onnx.HardSigmoid"(%arg0) {torch.onnx.alpha = 5.000000e-01 : f32, torch.onnx.beta = 6.000000e-01 : f32} : (!torch.vtensor<[3],f32>) -> !torch.vtensor<[3],f32> return %0 : !torch.vtensor<[3],f32> } @@ -921,17 +919,16 @@ func.func @test_hardsigmoid(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtenso // CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32> // CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00 // CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32> - // CHECK: %[[INT_1:.*]] = torch.constant.int 1 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6 - // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32> - // CHECK: %[[INT_0:.*]] = torch.constant.int 0 + // CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6 - // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: %[[RESULT:.*]] = torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32> // CHECK: return %[[RESULT:.*]] : !torch.vtensor<[3,4,5],f32> %0 = torch.operator "onnx.HardSigmoid"(%arg0) {torch.onnx.alpha = 5.000000e-01 : f32, torch.onnx.beta = 6.000000e-01 : f32} : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> @@ -947,17 +944,16 @@ func.func @test_hardsigmoid_default(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torc // CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32> // CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00 // CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32> - // CHECK: %[[INT_1:.*]] = torch.constant.int 1 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6 - // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32> - // CHECK: %[[INT_0:.*]] = torch.constant.int 0 + // CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00 // CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list // CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none // CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6 - // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> + // CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32> // CHECK: torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32> %0 = torch.operator "onnx.HardSigmoid"(%arg0) : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> return %0 : !torch.vtensor<[3,4,5],f32>