-
Notifications
You must be signed in to change notification settings - Fork 254
/
Copy pathrun.py
92 lines (80 loc) · 3.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#
# ColorHandPose3DNetwork - Network for estimating 3D Hand Pose from a single RGB Image
# Copyright (C) 2017 Christian Zimmermann
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function, unicode_literals
import tensorflow as tf
import numpy as np
import scipy.misc
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from nets.ColorHandPose3DNetwork import ColorHandPose3DNetwork
from utils.general import detect_keypoints, trafo_coords, plot_hand, plot_hand_3d
if __name__ == '__main__':
# images to be shown
image_list = list()
image_list.append('./data/img.png')
image_list.append('./data/img2.png')
image_list.append('./data/img3.png')
image_list.append('./data/img4.png')
image_list.append('./data/img5.png')
# network input
image_tf = tf.placeholder(tf.float32, shape=(1, 240, 320, 3))
hand_side_tf = tf.constant([[1.0, 0.0]]) # left hand (true for all samples provided)
evaluation = tf.placeholder_with_default(True, shape=())
# build network
net = ColorHandPose3DNetwork()
hand_scoremap_tf, image_crop_tf, scale_tf, center_tf,\
keypoints_scoremap_tf, keypoint_coord3d_tf = net.inference(image_tf, hand_side_tf, evaluation)
# Start TF
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
# initialize network
net.init(sess)
# Feed image list through network
for img_name in image_list:
image_raw = scipy.misc.imread(img_name)
image_raw = scipy.misc.imresize(image_raw, (240, 320))
image_v = np.expand_dims((image_raw.astype('float') / 255.0) - 0.5, 0)
hand_scoremap_v, image_crop_v, scale_v, center_v,\
keypoints_scoremap_v, keypoint_coord3d_v = sess.run([hand_scoremap_tf, image_crop_tf, scale_tf, center_tf,
keypoints_scoremap_tf, keypoint_coord3d_tf],
feed_dict={image_tf: image_v})
hand_scoremap_v = np.squeeze(hand_scoremap_v)
image_crop_v = np.squeeze(image_crop_v)
keypoints_scoremap_v = np.squeeze(keypoints_scoremap_v)
keypoint_coord3d_v = np.squeeze(keypoint_coord3d_v)
# post processing
image_crop_v = ((image_crop_v + 0.5) * 255).astype('uint8')
coord_hw_crop = detect_keypoints(np.squeeze(keypoints_scoremap_v))
coord_hw = trafo_coords(coord_hw_crop, center_v, scale_v, 256)
# visualize
fig = plt.figure(1)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224, projection='3d')
ax1.imshow(image_raw)
plot_hand(coord_hw, ax1)
ax2.imshow(image_crop_v)
plot_hand(coord_hw_crop, ax2)
ax3.imshow(np.argmax(hand_scoremap_v, 2))
plot_hand_3d(keypoint_coord3d_v, ax4)
ax4.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view
ax4.set_xlim([-3, 3])
ax4.set_ylim([-3, 1])
ax4.set_zlim([-3, 3])
plt.show()