-
Notifications
You must be signed in to change notification settings - Fork 254
/
Copy pathtraining_handsegnet.py
97 lines (80 loc) · 3.47 KB
/
training_handsegnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#
# ColorHandPose3DNetwork - Network for estimating 3D Hand Pose from a single RGB Image
# Copyright (C) 2017 Christian Zimmermann
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function, unicode_literals
import tensorflow as tf
import os
import sys
from nets.ColorHandPose3DNetwork import ColorHandPose3DNetwork
from data.BinaryDbReader import BinaryDbReader
from utils.general import LearningRateScheduler, load_weights_from_snapshot
# training parameters
train_para = {'lr': [1e-5, 1e-6, 1e-7],
'lr_iter': [20000, 30000],
'max_iter': 40000,
'show_loss_freq': 1000,
'snapshot_freq': 5000,
'snapshot_dir': 'snapshots_handsegnet'}
# get dataset
dataset = BinaryDbReader(mode='training',
batch_size=8, shuffle=True,
hue_aug=True, random_crop_to_size=True)
# build network graph
data = dataset.get()
# build network
evaluation = tf.placeholder_with_default(True, shape=())
net = ColorHandPose3DNetwork()
hand_mask_pred = net.inference_detection(data['image'], train=True)
# Start TF
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
tf.train.start_queue_runners(sess=sess)
# Loss
loss = 0.0
s = data['hand_mask'].get_shape().as_list()
for i, pred_item in enumerate(hand_mask_pred):
gt = tf.reshape(data['hand_mask'], [s[0]*s[1]*s[2], -1])
pred = tf.reshape(hand_mask_pred, [s[0]*s[1]*s[2], -1])
loss += tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=gt))
# Solver
global_step = tf.Variable(0, trainable=False, name="global_step")
lr_scheduler = LearningRateScheduler(values=train_para['lr'], steps=train_para['lr_iter'])
lr = lr_scheduler.get_lr(global_step)
opt = tf.train.AdamOptimizer(lr)
train_op = opt.minimize(loss)
# init weights
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=1, keep_checkpoint_every_n_hours=4.0)
rename_dict = {'CPM/PersonNet': 'HandSegNet',
'_CPM': ''}
load_weights_from_snapshot(sess, './weights/cpm-model-mpii', ['PoseNet', 'Mconv', 'conv6'], rename_dict)
# snapshot dir
if not os.path.exists(train_para['snapshot_dir']):
os.mkdir(train_para['snapshot_dir'])
print('Created snapshot dir:', train_para['snapshot_dir'])
# Training loop
for i in range(train_para['max_iter']):
_, loss_v = sess.run([train_op, loss])
if (i % train_para['show_loss_freq']) == 0:
print('Iteration %d\t Loss %.1e' % (i, loss_v))
sys.stdout.flush()
if (i % train_para['snapshot_freq']) == 0:
saver.save(sess, "%s/model" % train_para['snapshot_dir'], global_step=i)
print('Saved a snapshot.')
sys.stdout.flush()
print('Training finished. Saving final snapshot.')
saver.save(sess, "%s/model" % train_para['snapshot_dir'], global_step=train_para['max_iter'])