-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy pathmain_conv.py
187 lines (154 loc) · 6.05 KB
/
main_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os.path
import time
import numpy as np
import tensorflow as tf
import cv2
import bouncing_balls as b
import layer_def as ld
import BasicConvLSTMCell
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('train_dir', './checkpoints/train_store_conv',
"""dir to store trained net""")
tf.app.flags.DEFINE_integer('hidden_size', 20,
"""size of hidden layer""")
tf.app.flags.DEFINE_integer('seq_length', 5,
"""size of hidden layer""")
tf.app.flags.DEFINE_integer('max_step', 200000,
"""max num of steps""")
tf.app.flags.DEFINE_float('keep_prob', .8,
"""for dropout""")
tf.app.flags.DEFINE_float('lr', .001,
"""for dropout""")
tf.app.flags.DEFINE_integer('batch_size', 16,
"""batch size for training""")
tf.app.flags.DEFINE_float('weight_init', .1,
"""weight init for fully connected layers""")
fourcc = cv2.cv.CV_FOURCC('m', 'p', '4', 'v')
def generate_bouncing_ball_sample(batch_size, seq_length, shape, num_balls):
dat = np.zeros((batch_size, seq_length, shape, shape, 3))
for i in xrange(batch_size):
dat[i, :, :, :, :] = b.bounce_vec(32, num_balls, seq_length)
return dat
def train():
"""Train ring_net for a number of steps."""
with tf.Graph().as_default():
# make inputs
x = tf.placeholder(tf.float32, [None, FLAGS.seq_length, 32, 32, 3])
# possible dropout inside
keep_prob = tf.placeholder("float")
x_dropout = tf.nn.dropout(x, keep_prob)
# create network
x_unwrap = []
# conv peice in
for i in xrange(FLAGS.seq_length-1):
if i == 0:
# conv1
conv1 = ld.conv_layer(x_dropout[:,i,:,:,:], 3, 2, 8, "encode_1")
else:
# conv1
conv1 = ld.conv_layer(x_1, 3, 2, 8, "encode_1")
# conv2
conv2 = ld.conv_layer(conv1, 3, 1, 8, "encode_2")
# conv3
conv3 = ld.conv_layer(conv2, 3, 2, 8, "encode_3")
# conv4
conv4 = ld.conv_layer(conv3, 1, 1, 4, "encode_4")
# conv5
conv5 = ld.transpose_conv_layer(conv4, 1, 1, 8, "decode_5")
# conv6
conv6 = ld.transpose_conv_layer(conv5, 3, 2, 8, "decode_6")
# conv7
conv7 = ld.transpose_conv_layer(conv6, 3, 1, 8, "decode_7")
# x_1
x_1 = ld.transpose_conv_layer(conv7, 3, 2, 3, "decode_8", True) # set activation to linear
x_unwrap.append(x_1)
# set reuse to true after first go
if i == 0:
tf.get_variable_scope().reuse_variables()
# pack them all together
x_unwrap = tf.stack(x_unwrap)
x_unwrap = tf.transpose(x_unwrap, [1,0,2,3,4])
# this part will be used for generating video
x_unwrap_gen = []
for i in xrange(50):
if i == 0:
# conv1
conv1 = ld.conv_layer(x[:,0,:,:,:], 3, 2, 8, "encode_1")
else:
# conv1
conv1 = ld.conv_layer(x_1_gen, 3, 2, 8, "encode_1")
# conv2
conv2 = ld.conv_layer(conv1, 3, 1, 8, "encode_2")
# conv3
conv3 = ld.conv_layer(conv2, 3, 2, 8, "encode_3")
# conv4
conv4 = ld.conv_layer(conv3, 1, 1, 4, "encode_4")
# conv5
conv5 = ld.transpose_conv_layer(conv4, 1, 1, 8, "decode_5")
# conv6
conv6 = ld.transpose_conv_layer(conv5, 3, 2, 8, "decode_6")
# conv7
conv7 = ld.transpose_conv_layer(conv6, 3, 1, 8, "decode_7")
# x_1
x_1_gen = ld.transpose_conv_layer(conv7, 3, 2, 3, "decode_8", True) # set activation to linear
x_unwrap_gen.append(x_1_gen)
# pack them generated ones
x_unwrap_gen = tf.stack(x_unwrap_gen)
x_unwrap_gen = tf.transpose(x_unwrap_gen, [1,0,2,3,4])
# calc total loss (compare x_t to x_t+1)
loss = tf.nn.l2_loss(x[:,1:,:,:,:] - x_unwrap)
tf.summary.scalar('loss', loss)
# training
train_op = tf.train.AdamOptimizer(FLAGS.lr).minimize(loss)
# List of all Variables
variables = tf.global_variables()
# Build a saver
saver = tf.train.Saver(tf.global_variables())
# Summary op
summary_op = tf.summary.merge_all()
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph.
sess = tf.Session()
# init if this is the very time training
print("init network from scratch")
sess.run(init)
# Summary op
graph_def = sess.graph.as_graph_def(add_shapes=True)
summary_writer = tf.summary.FileWriter(FLAGS.train_dir, graph_def=graph_def)
for step in xrange(FLAGS.max_step):
dat = generate_bouncing_ball_sample(FLAGS.batch_size, FLAGS.seq_length, 32, FLAGS.num_balls)
t = time.time()
_, loss_r = sess.run([train_op, loss],feed_dict={x:dat, keep_prob:FLAGS.keep_prob})
elapsed = time.time() - t
if step%100 == 0 and step != 0:
summary_str = sess.run(summary_op, feed_dict={x:dat, keep_prob:FLAGS.keep_prob})
summary_writer.add_summary(summary_str, step)
print("time per batch is " + str(elapsed))
print(step)
print(loss_r)
assert not np.isnan(loss_r), 'Model diverged with loss = NaN'
if step%1000 == 0:
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
print("saved to " + FLAGS.train_dir)
# make video
print("now generating video!")
video = cv2.VideoWriter()
success = video.open("generated_conv_video.mov", fourcc, 4, (180, 180), True)
dat_gif = dat
ims = sess.run([x_unwrap_gen],feed_dict={x:dat_gif, keep_prob:FLAGS.keep_prob})
ims = ims[0][0]
print(ims.shape)
for i in xrange(50):
x_1_r = np.uint8(np.maximum(ims[i,:,:,:], 0) * 255)
new_im = cv2.resize(x_1_r, (180,180))
video.write(new_im)
video.release()
def main(argv=None): # pylint: disable=unused-argument
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
train()
if __name__ == '__main__':
tf.app.run()