-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
383 lines (316 loc) · 12.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import numpy as np
import torch
import re
import copy
import torch
import transformers
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = torch.sum(mx, dim=1)
r_inv = torch.pow(rowsum, -1).flatten()
r_inv[torch.isinf(r_inv)] = 0.
r_mat_inv = torch.diag(r_inv)
mx = torch.mm(r_mat_inv, mx)
return mx
def normalize_adj(adj):
"""D^(-1/2)AD^(-1/2)"""
# D = torch.diag(torch.sum(adj > 1e-5, dim=1)).float()
# D_2 = torch.pow(D, -0.5)
# D_2[torch.isinf(D_2)] = 0.
# ans = torch.mm(D_2, adj)
# ans = torch.mm(ans, D_2)
adj = adj / (adj.sum(dim = 1,keepdim=True)+1e-5)
return adj
def normalize_features(mx):
rowsum = mx.sum(1)
r_inv = torch.pow(rowsum, -1).flatten()
r_inv[torch.isinf(r_inv)] = 0.
r_mat_inv = torch.diag(r_inv)
mx = torch.mm(r_mat_inv, mx)
return mx
def union_size(yhat, y, axis):
# axis=0 for label-level union (macro). axis=1 for instance-level
return np.logical_or(yhat, y).sum(axis=axis).astype(float)
def intersect_size(yhat, y, axis):
# axis=0 for label-level union (macro). axis=1 for instance-level
return np.logical_and(yhat, y).sum(axis=axis).astype(float)
def macro_accuracy(yhat, y):
num = intersect_size(yhat, y, 0) / (union_size(yhat, y, 0) + 1e-10)
return np.mean(num)
def macro_precision(yhat, y):
num = intersect_size(yhat, y, 0) / (yhat.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_recall(yhat, y):
num = intersect_size(yhat, y, 0) / (y.sum(axis=0) + 1e-10)
return np.mean(num)
def macro_f1(yhat, y):
prec = macro_precision(yhat, y)
rec = macro_recall(yhat, y)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2 * (prec * rec) / (prec + rec)
return f1
def all_macro(yhat, y):
return macro_accuracy(yhat, y), macro_precision(yhat, y), macro_recall(yhat, y), macro_f1(yhat, y)
def micro_accuracy(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / (union_size(yhatmic, ymic, 0) + 1e-10)
def micro_precision(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / (yhatmic.sum(axis=0) + 1e-10)
def micro_recall(yhatmic, ymic):
return intersect_size(yhatmic, ymic, 0) / (ymic.sum(axis=0) + 1e-10)
def micro_f1(yhatmic, ymic):
prec = micro_precision(yhatmic, ymic)
rec = micro_recall(yhatmic, ymic)
if prec + rec == 0:
f1 = 0.
else:
f1 = 2 * (prec * rec) / (prec + rec)
return f1
def all_micro(yhatmic, ymic):
return micro_accuracy(yhatmic, ymic), micro_precision(yhatmic, ymic), micro_recall(yhatmic, ymic), micro_f1(yhatmic,
ymic)
def all_metrics(y_hat, y):
"""
:param y_hat:
:param y:
:return:
"""
names = ['acc', 'prec', 'rec', 'f1']
macro_metrics = all_macro(y_hat, y)
y_mic = y.ravel()
y_hat_mic = y_hat.ravel()
micro_metrics = all_micro(y_hat_mic, y_mic)
metrics = {names[i] + "_macro": macro_metrics[i] for i in range(len(macro_metrics))}
metrics.update({names[i] + '_micro': micro_metrics[i] for i in range(len(micro_metrics))})
return metrics
# 使用pytorch计算top5准确率的函数[^2^][2]
def topk_accuracy(logits, target, topk=(1,5,10)):
indices = np.argsort(logits, axis=-1)
batch_size,class_num = logits.shape
ans = []
for k in topk:
predict = np.zeros((batch_size,class_num))
for i in range(batch_size):
predict[i,indices[i,-k:]] = 1
ans.append(np.sum(predict*target) / (batch_size*k))
return ans
def print_metrics(metrics_test):
print("\n[MACRO] accuracy, precision, recall, f-measure")
print("%.4f, %.4f, %.4f, %.4f" %
(metrics_test["acc_macro"], metrics_test["prec_macro"], metrics_test["rec_macro"], metrics_test["f1_macro"]))
print("[MICRO] accuracy, precision, recall, f-measure")
print("%.4f, %.4f, %.4f, %.4f" %
(metrics_test["acc_micro"], metrics_test["prec_micro"], metrics_test["rec_micro"], metrics_test["f1_micro"]))
def write_result(report, result_path):
with open(result_path, "w", encoding="UTF-8")as f:
f.write(report)
def get_age(raw_age):
if '岁' in raw_age or '月' in raw_age or '日' in raw_age or '天' in raw_age:
year = re.search(r'(\d*?)岁',raw_age)
month = re.search(r'(\d*?)月',raw_age)
day = re.search(r'(\d*?)日',raw_age)
day2 = re.search(r'(\d*?)天',raw_age)
ans = 0
if year is None or year.group(1)=='': ans += 0
else: ans += int(year.group(1))*365
if month is None or month.group(1)=='': ans += 0
else: ans += int(month.group(1))*30
if day is None or day.group(1)=='': ans += 0
else: ans += int(day.group(1))
if day2 is None or day2.group(1)=='': ans += 0
else: ans += int(day2.group(1))
ans = ans // 365
else:
if 'Y' in raw_age:
raw_age = raw_age.replace('Y','')
try:
ans = int(raw_age)
except:
ans = -1
if ans < 0:
return ''
elif ans >= 0 and ans < 1:
return '婴儿'
elif ans >= 1 and ans <= 6:
return '童年'
elif ans >=7 and ans <= 18:
return '少年'
elif ans >= 19 and ans <= 30:
return '青年'
elif ans >= 31 and ans <= 40:
return '壮年'
elif ans >= 41 and ans <= 55:
return '中年'
else:
return '老年'
def format(entity):
entity = entity.replace('+','\+').replace('*','\*').replace('.','\.')\
.replace('(','\(').replace(')','\)').replace('[','\[')\
.replace(']','\[')
return entity
def remove_neg_entities(document, entities):
entities = list(set(entities))
for entity in entities:
index = document.index(entity)
if '无' in document[min(0,index-20):index] or '否认' in document[min(0,index-20):index]:
entities.remove(entity)
# if re.search(r'(无|(否认))(.{0,10}(、|及|,))*?.{0,5}'+format(entity),document) is not None:
# entities.remove(entity)
return entities
import os
import re
from transformers import AutoModel,AutoTokenizer
import torch
import numpy as np
class GenerateEmbedding:
def __init__(self,bert_path,cuda):
self.cuda = cuda
self.bert = AutoModel.from_pretrained(bert_path)
self.tokenizer = AutoTokenizer.from_pretrained(bert_path)
if torch.cuda.is_available():
self.bert = self.bert.cuda(cuda)
def generate(self,entity):
"""
生成实体嵌入向量
"""
entity = '#' + entity
tokens = self.tokenizer(entity,return_tensors = 'pt')
with torch.no_grad():
if torch.cuda.is_available():
tokens['input_ids'] = tokens['input_ids'].cuda(self.cuda)
tokens['attention_mask'] = tokens['attention_mask'].cuda(self.cuda)
output = self.bert(tokens['input_ids'],tokens['attention_mask']).last_hidden_state[:,2:]
return output.squeeze(0).mean(dim = 0).cpu().numpy()
def similarity(self,vec1,vec2):
"""
计算余弦相似度
"""
return np.sum(vec1 * vec2) / (np.sqrt(np.sum(np.power(vec1,2))) + np.sqrt(np.sum(np.power(vec2,2))))
from sko.GA import GA
def best_threshold1(Y,Y_hat,prec=0.01):
"""
通过验证集确定最佳阈值
Y : [batch_size, class_num] ∈ {0,1}
Y_hat : [batch_size, class_num] ∈ [0,1]
prec : float ∈ [0,1] 精度
return: [class_num] ∈ [0,1] 最佳阈值
"""
def func(threshold):
threshold = np.expand_dims(threshold, axis=0)
y_hat = Y_hat.copy()
y_hat[y_hat>threshold] = 1
y_hat[y_hat<=threshold] = 0
return -micro_f1(y_hat.ravel(),Y.ravel()) # + 0.2 * np.mean(np.abs(threshold-0.5)) # 加入正则
ga = GA(func=func, n_dim=Y.shape[1], size_pop=1000, max_iter=500, prob_mut=0.01,
lb=[0.35]*Y.shape[1], ub=[0.65]*Y.shape[1], precision=[prec]*Y.shape[1])
best_x, best_y = ga.run()
return best_x
def best_threshold(Y,Y_hat,prec=0.01):
"""
通过验证集确定最佳阈值
Y : [batch_size, class_num] ∈ {0,1}
Y_hat : [batch_size, class_num] ∈ [0,1]
prec : float ∈ [0,1] 精度
return: [class_num] ∈ [0,1] 最佳阈值
"""
def func(threshold):
# threshold = threshold.repeat(Y.shape[1]).reshape(1,-1)
y_hat = Y_hat.copy()
y_hat[y_hat>threshold] = 1
y_hat[y_hat<=threshold] = 0
return -micro_f1(y_hat.ravel(),Y.ravel()) # + 0.2 * np.mean(np.abs(threshold-0.5)) # 加入正则
ga = GA(func=func, n_dim=Y.shape[1], size_pop=100, max_iter=500, prob_mut=0.01,
lb=[0.35]*Y.shape[1], ub=[0.65]*Y.shape[1], precision=[prec]*Y.shape[1])
best_x, best_y = ga.run()
return best_x
def edit_distance(str1, str2):
"""
python 实现编辑距离
"""
m = len(str1)
n = len(str2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if str1[i - 1] == str2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1])
return dp[m][n]
def model_optimizer(model,model_name,opt):
param_optimizer = None
if 'LongFormer' in model_name:
bert_params = set(model.longformer_layer.word_embedding.parameters())
other_params = list(set(model.parameters()) - bert_params)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = [
{'params': [p for n, p in model.longformer_layer.word_embedding.named_parameters() if not any(nd in n for nd in no_decay)],
'lr': opt.bert_lr,
'weight_decay': 1e-2},
{'params': [p for n, p in model.longformer_layer.word_embedding.named_parameters() if any(nd in n for nd in no_decay)],
'lr': 0.0,
'weight_decay': 0.0},
{'params': other_params,
'lr': opt.other_lr,
'weight_decay': 0}
]
elif 'Ernie' in model_name:
bert_params = set(model.ernie_layer.word_embedding.parameters())
other_params = list(set(model.parameters()) - bert_params)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = [
{'params': [p for n, p in model.ernie_layer.word_embedding.named_parameters() if not any(nd in n for nd in no_decay)],
'lr': opt.bert_lr,
'weight_decay': 1e-2},
{'params': [p for n, p in model.ernie_layer.word_embedding.named_parameters() if any(nd in n for nd in no_decay)],
'lr': 0.0,
'weight_decay': 0.0},
{'params': other_params,
'lr': opt.other_lr,
'weight_decay': 0}
]
elif 'Bert' in model_name:
bert_params = set(model.bert_layer.word_embedding.parameters())
other_params = list(set(model.parameters()) - bert_params)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = [
{'params': [p for n, p in model.bert_layer.word_embedding.named_parameters() if not any(nd in n for nd in no_decay)],
'lr': opt.bert_lr,
'weight_decay': 1e-2},
{'params': [p for n, p in model.bert_layer.word_embedding.named_parameters() if any(nd in n for nd in no_decay)],
'lr': 0.0,
'weight_decay': 0.0},
{'params': other_params,
'lr': opt.other_lr,
'weight_decay': 0}
]
elif 'Auto' in model_name:
bert_params = set(model.base_layer.word_embedding.parameters())
other_params = list(set(model.parameters()) - bert_params)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = [
{'params': [p for n, p in model.base_layer.word_embedding.named_parameters() if not any(nd in n for nd in no_decay)],
'lr': opt.bert_lr,
'weight_decay': 1e-2},
{'params': [p for n, p in model.base_layer.word_embedding.named_parameters() if any(nd in n for nd in no_decay)],
'lr': 0.0,
'weight_decay': 0.0},
{'params': other_params,
'lr': opt.other_lr,
'weight_decay': 0}
]
if param_optimizer is not None:
optimizer = transformers.AdamW(param_optimizer, lr=opt.other_lr, weight_decay=0.0)
else:
optimizer = torch.optim.Adam(model.parameters(),lr = opt.other_lr)
return optimizer
if __name__ == '__main__':
logits = np.random.randn(2,50)
y = np.zeros((2,50))
ans = topk_accuracy(logits,y)
print(ans)