From 254018c68ab257d349af0bc02714e80cae90215e Mon Sep 17 00:00:00 2001 From: Oskar Laverny Date: Sat, 21 Sep 2024 19:43:25 +0200 Subject: [PATCH] refactor: Clean up constructor and fix the sampling via stochastic representation for FGMCopula --- src/MiscellaneousCopulas/FGMCopula.jl | 85 ++++++++++----------------- 1 file changed, 31 insertions(+), 54 deletions(-) diff --git a/src/MiscellaneousCopulas/FGMCopula.jl b/src/MiscellaneousCopulas/FGMCopula.jl index e1f54727..a15a5bb4 100644 --- a/src/MiscellaneousCopulas/FGMCopula.jl +++ b/src/MiscellaneousCopulas/FGMCopula.jl @@ -16,22 +16,19 @@ C(\\boldsymbol{u})=\\prod_{i=1}^{d}u_i \\left[1+ \\sum_{k=2}^{d}\\sum_{1 \\leq j where `` \\bar{u}=1-u``. -More details about Farlie-Gumbel-Morgenstern (FGM) copula are found in : - - Nelsen, Roger B. An introduction to copulas. Springer, 2006. Exercise 3.38. - -We use the stochastic representation of the copula to obtain random samples. - - Blier-Wong, C., Cossette, H., & Marceau, E. (2022). Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis, 173, 107506. - It has a few special cases: - When d=2 and θ = 0, it is the IndependentCopula. +More details about Farlie-Gumbel-Morgenstern (FGM) copula are found in [nelsen2006](@cite). +We use the stochastic representation from [blier2022stochastic](@cite) to obtain random samples. + References: * [nelsen2006](@cite) Nelsen, Roger B. An introduction to copulas. Springer, 2006. +* [blier2022stochastic](@cite) Blier-Wong, C., Cossette, H., & Marceau, E. (2022). Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis, 173, 107506. """ -struct FGMCopula{d, Tθ} <: Copula{d} +struct FGMCopula{d, Tθ, Tf} <: Copula{d} θ::Tθ + fᵢ::Tf function FGMCopula(d, θ) vθ = typeof(θ)<:Vector ? θ : [θ] if all(θ .== 0) @@ -40,70 +37,50 @@ struct FGMCopula{d, Tθ} <: Copula{d} # Check first restrictions on parameters any(abs.(vθ) .> 1) && throw(ArgumentError("Each component of the parameter vector must satisfy that |θᵢ| ≤ 1")) length(vθ) != 2^d - d - 1 && throw(ArgumentError("Number of parameters (θ) must match the dimension ($d): 2ᵈ-d-1")) + # Last check: - rez = new{d, typeof(vθ)}(vθ) for epsilon in Base.product(fill([-1, 1], d)...) - if 1 + _reduce_over_combinations(rez,epsilon,prod) < 0 + if 1 + _fgm_red(vθ, epsilon) < 0 throw(ArgumentError("Invalid parameters. The parameters do not meet the condition to be an FGM copula")) end end - return rez + + # Now construct the stochastic representation: + wᵢ = [_fgm_red(vθ, 1 .- 2*Base.reverse(digits(i, base=2, pad=d))) for i in 0:(2^d-1)] + fᵢ = Distributions.DiscreteNonParametric(0:(2^d-1), (1 .+ wᵢ)/2^d) + return new{d, typeof(vθ), typeof(fᵢ)}(vθ, fᵢ) end end Base.eltype(C::FGMCopula) = eltype(C.θ) -function _reduce_over_combinations(C::FGMCopula{d,Tθ}, vector_to_combine, reducer_function) where {d,Tθ} - # This version of the reductor is non-allocative, which is much better in terms of performance. - # Moreover, since $d$ is a type parameter the loop will fold out at compile time :) - rez = zero(eltype(vector_to_combine)) - # Iterate over all possible combinations of k elements, for k = 2, 3, ..., d - i = 1 +function _fgm_red(θ, v) + # This function implements the reduction over combinations of the fgm copula. + # It is non-alocative thus performant :) + rez, d, i = zero(eltype(v)), length(v), 1 for k in 2:d - for indices in Combinatorics.combinations(1:d, k) - rez += C.θ[i] * reducer_function(vector_to_combine[indices]) - i = i+1 - end + for indices in Combinatorics.combinations(1:d, k) + rez += θ[i] * prod(v[indices]) + i = i+1 + end end return rez end -function _cdf(fgm::FGMCopula, u::Vector{T}) where {T} - return prod(u) * (1 + _reduce_over_combinations(fgm, 1 .-u, prod)) -end -function Distributions._logpdf(fgm::FGMCopula, u) - return log1p(_reduce_over_combinations(fgm, 1 .-2u, prod)) -end -function Distributions._rand!(rng::Distributions.AbstractRNG, fgm::FGMCopula{d,Tθ}, x::AbstractVector{T}) where {d,Tθ, T <: Real} - if d == 2 - u = rand(rng, T) - t = rand(rng, T) - a = 1.0 .+ fgm.θ .* (1.0-2.0*u) - b = sqrt.(a.^2 .-4.0 .*(a .-1.0).*t) - v = (2.0 .*t) ./(b .+ a) - x[1] = u - x[2] = v[1] - return x - elseif d > 2 - I = zeros(T,d) - for i in 1:d - term = _reduce_over_combinations(fgm, I, x -> (-1)^sum(x)) - I[i] = rand(rng) < (1 / 2^d) * (1 + term) - end - V0 = rand(rng, d) - V1 = rand(rng, d) - for j in 1:d - U_j = 1-sqrt(1-V0[j])*(1-V1[j])^(I[j]) - x[j] = U_j - end - return x - end +_cdf(fgm::FGMCopula, u::Vector{T}) where {T} = prod(u) * (1 + _fgm_red(fgm.θ, 1 .-u)) +Distributions._logpdf(fgm::FGMCopula, u) = log1p(_fgm_red(fgm.θ, 1 .-2u)) +function Distributions._rand!(rng::Distributions.AbstractRNG, fgm::FGMCopula{d, Tθ, Tf}, x::AbstractVector{T}) where {d,Tθ, Tf, T <: Real} + I = Base.reverse(digits(rand(rng,fgm.fᵢ), base=2, pad=d)) + V₀ = rand(rng, d) + V₁ = rand(rng, d) + x .= 1 .- sqrt.(V₀) .* (V₁ .^ I) + return x end -τ(fgm::FGMCopula) = (2*fgm.θ[1])/9 +τ(fgm::FGMCopula{2, Tθ, Tf}) where {Tθ,Tf} = (2*fgm.θ[1])/9 function τ⁻¹(::Type{FGMCopula}, τ) if !all(-2/9 <= τi <= 2/9 for τi in τ) throw(ArgumentError("For the FGM copula, tau must be in [-2/9, 2/9].")) end return max.(min.(9 * τ / 2, 1), -1) end -ρ(fgm::FGMCopula) = (1*fgm.θ)/3 # this is weird as it will return a vector ? +ρ(fgm::FGMCopula{2, Tθ, Tf}) where {Tθ,Tf} = fgm.θ[1]/3 function ρ⁻¹(::Type{FGMCopula}, ρ) if !all(-1/3 <= ρi <= 1/3 for ρi in ρ) throw(ArgumentError("For the FGM copula, rho must be in [-1/3, 1/3]."))