diff --git a/doc/changes/DM-41562.bugfix.md b/doc/changes/DM-41562.bugfix.md new file mode 100644 index 0000000000..ad5c4c4368 --- /dev/null +++ b/doc/changes/DM-41562.bugfix.md @@ -0,0 +1,3 @@ +Fix caching in DatasetRef deserialization that caused the serialized storage class to be ignored. + +This caused intermittent failures when running pipelines that use multiple storage classes for the same dataset type. diff --git a/python/lsst/daf/butler/_dataset_ref.py b/python/lsst/daf/butler/_dataset_ref.py index cb85cb13ef..428c91e035 100644 --- a/python/lsst/daf/butler/_dataset_ref.py +++ b/python/lsst/daf/butler/_dataset_ref.py @@ -464,17 +464,25 @@ def from_simple( Newly-constructed object. """ cache = PersistenceContextVars.datasetRefs.get() - localName = sys.intern( - datasetType.name - if datasetType is not None - else (x.name if (x := simple.datasetType) is not None else "") - ) - key = (simple.id.int, localName) - if cache is not None and (cachedRef := cache.get(key, None)) is not None: - return cachedRef + key = simple.id.int + if cache is not None and (ref := cache.get(key, None)) is not None: + if datasetType is not None: + if (component := datasetType.component()) is not None: + ref = ref.makeComponentRef(component) + ref = ref.overrideStorageClass(datasetType.storageClass_name) + return ref + if simple.datasetType is not None: + _, component = DatasetType.splitDatasetTypeName(simple.datasetType.name) + if component is not None: + ref = ref.makeComponentRef(component) + if simple.datasetType.storageClass is not None: + ref = ref.overrideStorageClass(simple.datasetType.storageClass) + return ref + # If dataset type is not given ignore the cache, because we can't + # reliably return the right storage class. # Minimalist component will just specify component and id and # require registry to reconstruct - if not (simple.datasetType is not None or simple.dataId is not None or simple.run is not None): + if simple.datasetType is None and simple.dataId is None and simple.run is None: if registry is None: raise ValueError("Registry is required to construct component DatasetRef from integer id") if simple.id is None: @@ -484,52 +492,42 @@ def from_simple( raise RuntimeError(f"No matching dataset found in registry for id {simple.id}") if simple.component: ref = ref.makeComponentRef(simple.component) - if cache is not None: - cache[key] = ref - return ref - - if universe is None and registry is None: - raise ValueError("One of universe or registry must be provided.") - - if universe is None and registry is not None: - universe = registry.dimensions - - if universe is None: - # this is for mypy - raise ValueError("Unable to determine a usable universe") - - if simple.datasetType is None and datasetType is None: - # mypy - raise ValueError("The DatasetType must be specified to construct a DatasetRef") - if datasetType is None: - if simple.datasetType is None: - raise ValueError("Cannot determine Dataset type of this serialized class") - datasetType = DatasetType.from_simple(simple.datasetType, universe=universe, registry=registry) - - if simple.dataId is None: - # mypy - raise ValueError("The DataId must be specified to construct a DatasetRef") - dataId = DataCoordinate.from_simple(simple.dataId, universe=universe) - - # Check that simple ref is resolved. - if simple.run is None: - dstr = "" - if simple.datasetType is None: - dstr = f" (datasetType={datasetType.name!r})" - raise ValueError( - "Run collection name is missing from serialized representation. " - f"Encountered with {simple!r}{dstr}." + else: + if universe is None: + if registry is None: + raise ValueError("One of universe or registry must be provided.") + universe = registry.dimensions + if datasetType is None: + if simple.datasetType is None: + raise ValueError("Cannot determine Dataset type of this serialized class") + datasetType = DatasetType.from_simple( + simple.datasetType, universe=universe, registry=registry + ) + if simple.dataId is None: + # mypy + raise ValueError("The DataId must be specified to construct a DatasetRef") + dataId = DataCoordinate.from_simple(simple.dataId, universe=universe) + # Check that simple ref is resolved. + if simple.run is None: + dstr = "" + if simple.datasetType is None: + dstr = f" (datasetType={datasetType.name!r})" + raise ValueError( + "Run collection name is missing from serialized representation. " + f"Encountered with {simple!r}{dstr}." + ) + ref = cls( + datasetType, + dataId, + id=simple.id, + run=simple.run, ) - - newRef = cls( - datasetType, - dataId, - id=simple.id, - run=simple.run, - ) if cache is not None: - cache[key] = newRef - return newRef + if ref.datasetType.component() is not None: + cache[key] = ref.makeCompositeRef() + else: + cache[key] = ref + return ref to_json = to_json_pydantic from_json: ClassVar = classmethod(from_json_pydantic) diff --git a/python/lsst/daf/butler/persistence_context.py b/python/lsst/daf/butler/persistence_context.py index d56a6df2d6..b366564d45 100644 --- a/python/lsst/daf/butler/persistence_context.py +++ b/python/lsst/daf/butler/persistence_context.py @@ -117,10 +117,12 @@ class PersistenceContextVars: r"""A cache of `DataCoordinate`\ s. """ - datasetRefs: ContextVar[dict[tuple[int, str], DatasetRef] | None] = ContextVar( - "datasetRefs", default=None - ) + datasetRefs: ContextVar[dict[int, DatasetRef] | None] = ContextVar("datasetRefs", default=None) r"""A cache of `DatasetRef`\ s. + + Keys are UUID converted to int, but only refs of parent dataset types are + cached AND THE STORAGE CLASS IS UNSPECIFIED; consumers of this cache must + call overrideStorageClass on the result. """ dimensionRecords: ContextVar[dict[Hashable, DimensionRecord] | None] = ContextVar(