diff --git a/disdrodb/api/checks.py b/disdrodb/api/checks.py index 60268b0a..1c5b14ea 100644 --- a/disdrodb/api/checks.py +++ b/disdrodb/api/checks.py @@ -166,7 +166,7 @@ def has_available_data( sample_interval=None, rolling=None, # Option for L2M - distribution=None, + model_name=None, ): """Return ``True`` if data are available for the given product and station.""" # Define product directory @@ -180,7 +180,7 @@ def has_available_data( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, # Directory options check_exists=False, ) @@ -204,7 +204,7 @@ def check_data_availability( sample_interval=None, rolling=None, # Option for L2M - distribution=None, + model_name=None, ): """Check the station product data directory has files inside. If not, raise an error.""" if not has_available_data( @@ -217,7 +217,7 @@ def check_data_availability( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ): msg = f"The {product} station data directory of {data_source} {campaign_name} {station_name} is empty !" logger.error(msg) diff --git a/disdrodb/api/create_directories.py b/disdrodb/api/create_directories.py index 6e3386f3..af91a95b 100644 --- a/disdrodb/api/create_directories.py +++ b/disdrodb/api/create_directories.py @@ -265,7 +265,7 @@ def create_product_directory( sample_interval=None, rolling=None, # Option for L2M - distribution=None, + model_name=None, ): """Initialize the directory structure for a DISDRODB product. @@ -298,7 +298,7 @@ def create_product_directory( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # Check metadata file is available @@ -321,7 +321,7 @@ def create_product_directory( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # Create required directory (if it doesn't exist) @@ -338,7 +338,7 @@ def create_product_directory( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # If product files are already available: @@ -361,7 +361,7 @@ def create_logs_directory( sample_interval=None, rolling=None, # Option for L2M - distribution=None, + model_name=None, ): """Initialize the logs directory structure for a DISDRODB product.""" # Define logs directory @@ -375,7 +375,7 @@ def create_logs_directory( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # Ensure empty log directory diff --git a/disdrodb/api/io.py b/disdrodb/api/io.py index f19d791a..8832f310 100644 --- a/disdrodb/api/io.py +++ b/disdrodb/api/io.py @@ -63,7 +63,7 @@ def get_filepaths( campaign_name, station_name, product, - distribution=None, + model_name=None, sample_interval=None, rolling=None, debugging_mode: bool = False, @@ -89,8 +89,8 @@ def get_filepaths( rolling : bool, optional Whether the dataset has been resampled by aggregating or rolling. It must be specified only for product L2E and L2M ! - distribution : str - The model of the statistical distribution for the DSD. + model_name : str + The model name of the statistical distribution for the DSD. It must be specified only for product L2M ! debugging_mode : bool, optional If ``True``, it select maximum 3 files for debugging purposes. @@ -116,7 +116,7 @@ def get_filepaths( sample_interval=sample_interval, rolling=rolling, # Options for L2M - distribution=distribution, + model_name=model_name, ) # Define glob pattern diff --git a/disdrodb/api/path.py b/disdrodb/api/path.py index c4cb6ff1..87955047 100644 --- a/disdrodb/api/path.py +++ b/disdrodb/api/path.py @@ -310,13 +310,6 @@ def check_sample_interval(sample_interval): raise ValueError("'sample_interval' must be an integer.") -def check_distribution(distribution): - """Check distribution argument validity.""" - valid_distributions = ["gamma", "normalized_gamma", "lognormal", "exponential"] - if distribution not in valid_distributions: - raise ValueError(f"Invalid 'distribution' {distribution}. Valid values are {valid_distributions}") - - def check_rolling(rolling): """Check rolling argument validity.""" if not isinstance(rolling, bool): @@ -325,7 +318,7 @@ def check_rolling(rolling): def define_product_dir_tree( product, - distribution=None, + model_name=None, sample_interval=None, rolling=None, ): @@ -341,8 +334,8 @@ def define_product_dir_tree( rolling : bool, optional Whether the dataset has been resampled by aggregating or rolling. It must be specified only for product L2E and L2M ! - distribution : str - The model of the statistical distribution for the DSD. + model_name : str + The custom model name of the fitted statistical distribution. It must be specified only for product L2M ! Returns @@ -362,10 +355,8 @@ def define_product_dir_tree( if product == "L2M": check_rolling(rolling) check_sample_interval(sample_interval) - check_distribution(distribution) sample_interval_acronym = define_accumulation_acronym(seconds=sample_interval, rolling=rolling) - distribution_acronym = get_distribution_acronym(distribution) - return os.path.join(product, distribution_acronym, sample_interval_acronym) + return os.path.join(product, model_name, sample_interval_acronym) raise ValueError(f"The product {product} is not defined.") @@ -422,7 +413,7 @@ def define_data_dir_new( data_source, campaign_name, station_name, - distribution=None, + model_name=None, sample_interval=None, rolling=None, base_dir=None, @@ -461,7 +452,7 @@ def define_data_dir_new( ) product_dir_tree = define_product_dir_tree( product=product, - distribution=distribution, + model_name=model_name, sample_interval=sample_interval, rolling=rolling, ) @@ -476,7 +467,7 @@ def define_logs_dir( data_source, campaign_name, station_name, - distribution=None, + model_name=None, sample_interval=None, rolling=None, base_dir=None, @@ -521,7 +512,7 @@ def define_logs_dir( ) product_dir_tree = define_product_dir_tree( product=product, - distribution=distribution, + model_name=model_name, sample_interval=sample_interval, rolling=rolling, ) @@ -536,7 +527,7 @@ def define_data_dir( data_source, campaign_name, station_name, - distribution=None, + model_name=None, sample_interval=None, rolling=None, base_dir=None, @@ -565,8 +556,8 @@ def define_data_dir( rolling : bool, optional Whether the dataset has been resampled by aggregating or rolling. It must be specified only for product L2E and L2M ! - distribution : str - The model of the statistical distribution for the DSD. + model_name : str + The name of the fitted statistical distribution for the DSD. It must be specified only for product L2M ! Returns @@ -592,10 +583,8 @@ def define_data_dir( elif product == "L2M": check_rolling(rolling) check_sample_interval(sample_interval) - check_distribution(distribution) sample_interval_acronym = define_accumulation_acronym(seconds=sample_interval, rolling=rolling) - distribution_acronym = get_distribution_acronym(distribution) - data_dir = os.path.join(station_dir, distribution_acronym, sample_interval_acronym) + data_dir = os.path.join(station_dir, model_name, sample_interval_acronym) else: raise ValueError("TODO") # CHECK Product on top !` if check_exists: @@ -667,17 +656,6 @@ def define_station_dir( #### Filenames for DISDRODB products -def get_distribution_acronym(distribution): - """Define DISDRODB L2M distribution acronym.""" - acronym_dict = { - "lognorm": "LOGNORM", - "normalized_gamma": "NGAMMA", - "gamma": "GAMMA", - "exponential": "EXP", - } - return acronym_dict[distribution] - - def define_accumulation_acronym(seconds, rolling): """Define the accumulation acronnym. @@ -701,7 +679,7 @@ def define_filename( sample_interval: Optional[int] = None, rolling: Optional[bool] = None, # L2M option - distribution: Optional[str] = None, + model_name: Optional[str] = None, # Filename options obj=None, add_version=True, @@ -728,8 +706,8 @@ def define_filename( rolling : bool, optional Whether the dataset has been resampled by aggregating or rolling. It must be specified only for product L2E and L2M ! - distribution : str - The model of the statistical distribution for the DSD. + model_name : str + The model name of the fitted statistical distribution for the DSD. It must be specified only for product L2M ! Returns @@ -753,8 +731,7 @@ def define_filename( sample_interval_acronym = define_accumulation_acronym(seconds=sample_interval, rolling=rolling) product_acronym = f"L2E.{sample_interval_acronym}" if product in ["L2M"]: - distribution_acronym = get_distribution_acronym(distribution) - product_acronym = f"L2M_{distribution_acronym}.{sample_interval_acronym}" + product_acronym = f"L2M_{model_name}.{sample_interval_acronym}" # -----------------------------------------. # Define base filename @@ -950,9 +927,9 @@ def define_l2m_filename( ds, campaign_name: str, station_name: str, - distribution: str, sample_interval: int, rolling: bool, + model_name: str, ) -> str: """Define L2M file name. @@ -973,14 +950,13 @@ def define_l2m_filename( from disdrodb import PRODUCT_VERSION from disdrodb.utils.xarray import get_dataset_start_end_time - distribution_acronym = get_distribution_acronym(distribution) sample_interval_acronym = define_accumulation_acronym(seconds=sample_interval, rolling=rolling) starting_time, ending_time = get_dataset_start_end_time(ds) starting_time = pd.to_datetime(starting_time).strftime("%Y%m%d%H%M%S") ending_time = pd.to_datetime(ending_time).strftime("%Y%m%d%H%M%S") version = PRODUCT_VERSION filename = ( - f"L2M_{distribution_acronym}.{sample_interval_acronym}.{campaign_name}." + f"L2M_{model_name}.{sample_interval_acronym}.{campaign_name}." + f"{station_name}.s{starting_time}.e{ending_time}.{version}.nc" ) return filename diff --git a/disdrodb/l2/processing.py b/disdrodb/l2/processing.py index 6cf130c0..03bcb687 100644 --- a/disdrodb/l2/processing.py +++ b/disdrodb/l2/processing.py @@ -477,7 +477,6 @@ def generate_l2_empirical(ds, ds_env=None): def generate_l2_model( ds, - distribution, ds_env=None, fall_velocity_method="Beard1976", # PSD discretization @@ -485,12 +484,11 @@ def generate_l2_model( diameter_max=8, diameter_spacing=0.05, # Fitting options - probability_method="cdf", - likelihood="multinomial", - truncated_likelihood=True, - optimizer="Nelder-Mead", - order=2, - add_gof_metrics=True, + psd_model=None, + optimization=None, + optimization_kwargs=None, + # GOF metrics options + gof_metrics=True, ): """ Generate the DISDRODB L2M dataset from a DISDRODB L2E dataset. @@ -503,8 +501,6 @@ def generate_l2_model( ---------- ds : xarray.Dataset DISDRODB L2E dataset. - distribution : str - The type of distribution to fit the PSD model. ds_env : xarray.Dataset, optional Environmental dataset used for fall velocity and water density estimates. If None, a default environment dataset will be loaded. @@ -514,20 +510,14 @@ def generate_l2_model( Maximum PSD diameter. The default value is 8 mm. diameter_spacing : float, optional PSD diameter spacing. The default value is 0.05 mm. - fall_velocity_method : str, optional - Method to compute raindrop fall velocity. The default method is "Beard1976". - probability_method : str, optional - Method to compute probabilities. The default is ``cdf``. - likelihood : str, optional - Likelihood function to use for fitting. The default is ``multinomial``. - truncated_likelihood : bool, optional - Whether to use truncated likelihood. The default is ``True``. - optimizer : str, optional - Optimization method to use. The default is ``Nelder-Mead``. - order : int, optional - The order parameter for the ``normalized_gamma`` distribution. - The default value is 2. - add_gof_metrics : bool, optional + psd_model : str + The PSD model to fit. See ``available_psd_models()``. + optimization : str, optional + The fitting optimization procedure. Either "GS" (Grid Search), "ML (Maximum Likelihood) + or "MOM" (Method of Moments). + optimization_kwargs : dict, optional + Dictionary with arguments to customize the fitting procedure. + gof_metrics : bool, optional Whether to add goodness-of-fit metrics to the output dataset. The default is True. Returns @@ -561,15 +551,23 @@ def generate_l2_model( # TODO --> try to fit and define reasonable criteria based on R2, max deviation, rain_rate abs/relative error ####------------------------------------------------------. - #### Define PSD model + #### Define default PSD optimization arguments + if psd_model is None and optimization is None: + psd_model = "NormalizedGammaPSD" + optimization = "GS" + optimization_kwargs = { + "target": "ND", + "transformation": "identity", + "error_order": 1, # MAE + } + + ####------------------------------------------------------. + #### Retrieve PSD parameters ds_psd_params = estimate_model_parameters( ds=ds, - distribution=distribution, - probability_method=probability_method, - likelihood=likelihood, - truncated_likelihood=truncated_likelihood, - optimizer=optimizer, - order=order, + psd_model=psd_model, + optimization=optimization, + optimization_kwargs=optimization_kwargs, ) psd_name = ds_psd_params.attrs["disdrodb_psd_model"] psd = create_psd(psd_name, parameters=ds_psd_params) @@ -610,7 +608,7 @@ def generate_l2_model( # Add GOF statistics if asked # TODO: Add metrics variables or GOF DataArray ? - if add_gof_metrics: + if gof_metrics: ds_gof = compute_gof_stats(drop_number_concentration=ds["drop_number_concentration"], psd=psd) ds_params.update(ds_gof) diff --git a/disdrodb/l2/processing_options.py b/disdrodb/l2/processing_options.py index 492c78ba..fd4639e1 100644 --- a/disdrodb/l2/processing_options.py +++ b/disdrodb/l2/processing_options.py @@ -9,28 +9,6 @@ "ROLL1MIN", "ROLL10MIN", ], # ["10S", "30S", "1MIN", "5MIN", "10MIN", "15MIN", "30MIN", "1H", "ROLL5MIN", "ROLL10MIN"], - # L2M options - "l2m_options": { - "fall_velocity_method": "Beard1976", - "diameter_min": 0, - "diameter_max": 8, - "diameter_spacing": 0.05, - }, - # PSD models fitting options - "psd_models": { - "gamma": { - "probability_method": "cdf", - "likelihood": "multinomial", - "truncated_likelihood": True, - "optimizer": "Nelder-Mead", - "add_gof_metrics": True, - }, - "normalized_gamma": { - "optimizer": "Nelder-Mead", - "order": 2, - "add_gof_metrics": True, - }, - }, # Radar options "radar_simulation_enabled": True, "radar_simulation_options": { @@ -39,6 +17,57 @@ "diameter_max": 8, "axis_ratio": "Thurai2007", }, + # L2E options + # "l2e_options": {} + # L2M options + "l2m_options": { + "fall_velocity_method": "Beard1976", + "diameter_min": 0, + "diameter_max": 8, + "diameter_spacing": 0.05, + "gof_metrics": True, + "models": { + # PSD models fitting options + "GAMMA_ML": { + "psd_model": "GammaPSD", + "optimization": "ML", + "optimization_kwargs": { + "init_method": "M246", + "probability_method": "cdf", + "likelihood": "multinomial", + "truncated_likelihood": True, + "optimizer": "Nelder-Mead", + }, + }, + "NGAMMA_GS_LOG_ND_MAE": { + "psd_model": "NormalizedGammaPSD", + "optimization": "GS", + "optimization_kwargs": { + "target": "ND", + "transformation": "log", + "error_order": 1, # MAE + }, + }, + # "NGAMMA_GS_ND_MAE": { + # "psd_model": "NormalizedGammaPSD", + # "optimization": "GS", + # "optimization_kwargs": { + # "target": "ND", + # "transformation": "identity", + # "error_order": 1, # MAE + # }, + # }, + # "NGAMMA_GS_Z": { + # "psd_model": "NormalizedGammaPSD", + # "optimization": "GS", + # "optimization_kwargs": { + # "target": "Z", + # "transformation": "identity", # unused + # "error_order": 1, # unused + # }, + # }, + }, + }, }, "specific_settings": { "10S": { diff --git a/disdrodb/l2/routines.py b/disdrodb/l2/routines.py index 3d8fb1ea..df2663a1 100644 --- a/disdrodb/l2/routines.py +++ b/disdrodb/l2/routines.py @@ -507,10 +507,8 @@ def _generate_l2m( # L2M options sample_interval, rolling, - distribution, + model_name, l2m_options, - # PSD options - model_options, # Radar options radar_simulation_enabled, radar_simulation_options, @@ -523,6 +521,13 @@ def _generate_l2m( # Define product name product = "L2M" + # -----------------------------------------------------------------. + # Define model options + psd_model = l2m_options["models"][model_name]["psd_model"] + optimization = l2m_options["models"][model_name]["optimization"] + optimization_kwargs = l2m_options["models"][model_name]["optimization_kwargs"] + other_options = {k: v for k, v in l2m_options.items() if k != "models"} + # -----------------------------------------------------------------. # Create file logger filename = os.path.basename(filepath) @@ -542,10 +547,29 @@ def _generate_l2m( try: # Open the raw netCDF with xr.open_dataset(filepath, chunks={}, cache=False) as ds: - ds = ds[["drop_number_concentration", "D50", "Nw", "Nt"]].load() + variables = [ + "drop_number_concentration", + "fall_velocity", + "D50", + "Nw", + "Nt", + "M1", + "M2", + "M3", + "M4", + "M5", + "M6", + ] + ds = ds[variables].load() # Produce L2M dataset - ds = generate_l2_model(ds=ds, distribution=distribution, **l2m_options, **model_options) + ds = generate_l2_model( + ds=ds, + psd_model=psd_model, + optimization=optimization, + optimization_kwargs=optimization_kwargs, + **other_options, + ) # Simulate L2M-based radar variables if asked if radar_simulation_enabled: @@ -560,9 +584,9 @@ def _generate_l2m( ds, campaign_name=campaign_name, station_name=station_name, - distribution=distribution, sample_interval=sample_interval, rolling=rolling, + model_name=model_name, ) filepath = os.path.join(data_dir, filename) # Write to disk @@ -670,8 +694,6 @@ def run_l2m_station( # ---------------------------------------------------------------------. # Loop - # rolling = False - # accumulation_interval = 60 # sample_interval_acronym = "1MIN" # l2_options = l2_processing_options["1MIN"] for sample_interval_acronym, l2_options in l2_processing_options.items(): @@ -726,11 +748,18 @@ def run_l2m_station( # -----------------------------------------------------------------. # Loop over distributions to fit - # model_options = l2_options["psd_models"]["normalized_gamma"] - for distribution, model_options in l2_options["psd_models"].items(): + # model_name = "GAMMA_ML" + # model_options = l2m_options["models"][model_name] + for model_name, model_options in l2m_options["models"].items(): + + # Retrieve model options + psd_model = model_options["psd_model"] + optimization = model_options["optimization"] # -----------------------------------------------------------------. - msg = f" - Fitting distribution {distribution} for sample interval {accumulation_interval} s." + msg = f" - Production of L2M_{model_name} for sample interval {accumulation_interval} s has started." + log_info(logger=logger, msg=msg, verbose=verbose) + msg = f" - Estimating {psd_model} parameters using {optimization}." log_info(logger=logger, msg=msg, verbose=verbose) # -------------------------------------------------------------. @@ -746,7 +775,7 @@ def run_l2m_station( sample_interval=accumulation_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # Define logs directory @@ -760,7 +789,7 @@ def run_l2m_station( sample_interval=accumulation_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) # Generate L2M files @@ -776,9 +805,8 @@ def run_l2m_station( # L2M option sample_interval=accumulation_interval, rolling=rolling, + model_name=model_name, l2m_options=l2m_options, - distribution=distribution, - model_options=model_options, # Radar options radar_simulation_enabled=radar_simulation_enabled, radar_simulation_options=radar_simulation_options, @@ -800,7 +828,7 @@ def run_l2m_station( station_name=station_name, base_dir=base_dir, # Product options - distribution=distribution, + model_name=model_name, sample_interval=sample_interval, rolling=rolling, # Logs list diff --git a/disdrodb/psd/__init__.py b/disdrodb/psd/__init__.py index d25e73de..f5068957 100644 --- a/disdrodb/psd/__init__.py +++ b/disdrodb/psd/__init__.py @@ -17,7 +17,7 @@ """Implement PSD model and fitting routines.""" -from disdrodb.psd.fitting import available_distributions, estimate_model_parameters +from disdrodb.psd.fitting import estimate_model_parameters from disdrodb.psd.models import ( ExponentialPSD, GammaPSD, @@ -29,12 +29,10 @@ __all__ = [ "available_psd_models", - "available_distributions", "create_psd", + "estimate_model_parameters", "LognormalPSD", "ExponentialPSD", "GammaPSD", "NormalizedGammaPSD", - "GammaPSD", - "estimate_model_parameters", ] diff --git a/disdrodb/psd/fitting.py b/disdrodb/psd/fitting.py index 91d5d185..314bda62 100644 --- a/disdrodb/psd/fitting.py +++ b/disdrodb/psd/fitting.py @@ -15,33 +15,19 @@ # along with this program. If not, see . # -----------------------------------------------------------------------------. """Routines for PSD fitting.""" - -import warnings -from contextlib import contextmanager - import numpy as np -import scipy.optimize import scipy.stats as ss import xarray as xr from scipy.integrate import quad from scipy.optimize import minimize from scipy.special import gamma, gammainc, gammaln # Regularized lower incomplete gamma function -from disdrodb.l2.empirical_dsd import get_mode_diameter -from disdrodb.psd.models import NormalizedGammaPSD - - -@contextmanager -def suppress_warnings(): - """Context manager suppressing RuntimeWarnings and UserWarnings.""" - with warnings.catch_warnings(): - warnings.simplefilter("ignore", RuntimeWarning) - warnings.simplefilter("ignore", UserWarning) - yield +from disdrodb.psd.models import ExponentialPSD, GammaPSD, LognormalPSD, NormalizedGammaPSD +from disdrodb.utils.warnings import suppress_warnings ####--------------------------------------------------------------------------------------. -#### Measures of fit +#### Goodness of fit (GOF) def compute_gof_stats(drop_number_concentration, psd): """ Compute various goodness-of-fit (GoF) statistics between observed and predicted values. @@ -55,6 +41,8 @@ def compute_gof_stats(drop_number_concentration, psd): ------- - ds: xarray.Dataset containing the computed GoF statistics """ + from disdrodb.l2.empirical_dsd import get_mode_diameter + # Retrieve diameter bin width diameter = drop_number_concentration["diameter_bin_center"] diameter_bin_width = drop_number_concentration["diameter_bin_width"] @@ -123,7 +111,7 @@ def compute_gof_stats(drop_number_concentration, psd): ####--------------------------------------------------------------------------------------. -#### Maximum Likelihood +#### Maximum Likelihood (ML) def get_expected_probabilities(params, cdf_func, pdf_func, bin_edges, probability_method, normalized=False): @@ -185,8 +173,10 @@ def get_adjusted_nt(cdf, params, Nt, bin_edges): # Estimate proportion of missing drops (Johnson's 2011 Eqs. 3) # --> Alternative: p = 1 - np.sum(pdf(diameter, params)* diameter_bin_width) # [-] p = 1 - np.diff(cdf([bin_edges[0], bin_edges[-1]], params)).item() # [-] - # Adjusts Nt for the proportion of drops not observed + # p = np.clip(p, 0, 1 - 1e-12) + if np.isclose(p, 1, atol=1e-12): + return np.nan return Nt / (1 - p) # [m-3] @@ -490,6 +480,8 @@ def param_constraints(params): def estimate_gamma_parameters( counts, + a, + scale, bin_edges, probability_method="cdf", likelihood="multinomial", @@ -504,6 +496,12 @@ def estimate_gamma_parameters( ---------- counts : array-like The counts for each bin in the histogram. + a: float + The shape parameter of the scipy.stats.gamma distribution. + A good default value is 1. + scale: float + The scale parameter of the scipy.stats.gamma distribution. + A good default value is 1. bin_edges : array-like The edges of the bins. probability_method : str, optional @@ -553,12 +551,13 @@ def gamma_pdf(x, params): return ss.gamma.pdf(x, a, loc=0, scale=scale) # Define valid parameters for the gamma distribution + # mu = -0.99 is a vertical line essentially ... def param_constraints(params): a, scale = params - return a > 0 and scale > 0 + return a > 0.1 and scale > 0 # using a > 0 cause some troubles # Definite initial guess for the parameters - initial_params = [1.0, 1.0] # a, scale (mu=a-1, a=mu+1) + initial_params = [a, scale] # (mu=a-1, a=mu+1) # Define bounds for a and scale bounds = [(1e-6, None), (1e-6, None)] @@ -600,19 +599,39 @@ def param_constraints(params): # Compute N0 # - Use logarithmic computations to prevent overflow # - N0 = Nt * Lambda ** (mu + 1) / gamma(mu + 1) - # with suppress_warnings(): - log_N0 = np.log(Nt) + (mu + 1) * np.log(Lambda) - gammaln(mu + 1) - N0 = np.exp(log_N0) - if not np.isfinite(N0): - N0 = np.nan + with suppress_warnings(): + log_N0 = np.log(Nt) + (mu + 1) * np.log(Lambda) - gammaln(mu + 1) + N0 = np.exp(log_N0) + if not np.isfinite(N0): + N0 = np.nan # Define output output = {"N0": N0, "mu": mu, "Lambda": Lambda} if output_dictionary else np.array([N0, mu, Lambda]) return output +def _get_initial_gamma_parameters(ds, mom_method=None): + if mom_method is None: + ds_init = xr.Dataset( + { + "a": xr.ones_like(ds["M1"]), + "scale": xr.ones_like(ds["M1"]), + }, + ) + else: + ds_init = get_mom_parameters( + ds=ds, + psd_model="GammaPSD", + mom_methods=mom_method, + ) + ds_init["a"] = ds_init["mu"] + 1 + ds_init["scale"] = 1 / ds_init["Lambda"] + return ds_init + + def get_gamma_parameters( ds, + init_method=None, probability_method="cdf", likelihood="multinomial", truncated_likelihood=True, @@ -630,6 +649,11 @@ def get_gamma_parameters( - ``diameter_bin_lower``: The lower bounds of the diameter bins. - ``diameter_bin_upper``: The upper bounds of the diameter bins. - ``diameter_bin_center``: The center values of the diameter bins. + - The moments M0...M6 variables required to compute the initial parameters + with the specified mom_method. + init_method: str or list + The method(s) of moments used to initialize the gamma parameters. + If None, the scale parameter is set to 1 and mu to 0 (a=1). probability_method : str, optional Method to compute probabilities. The default is ``cdf``. likelihood : str, optional @@ -658,6 +682,9 @@ def get_gamma_parameters( counts = ds["drop_number_concentration"] * ds["diameter_bin_width"] diameter_breaks = np.append(ds["diameter_bin_lower"].data, ds["diameter_bin_upper"].data[-1]) + # Define initial parameters (a, scale) + ds_init = _get_initial_gamma_parameters(ds, mom_method=init_method) + # Define kwargs kwargs = { "output_dictionary": False, @@ -672,8 +699,10 @@ def get_gamma_parameters( da_params = xr.apply_ufunc( estimate_gamma_parameters, counts, + ds_init["a"], + ds_init["scale"], kwargs=kwargs, - input_core_dims=[["diameter_bin_center"]], + input_core_dims=[["diameter_bin_center"], [], []], output_core_dims=[["parameters"]], vectorize=True, dask="parallelized", @@ -689,7 +718,6 @@ def get_gamma_parameters( # Add DSD model name to the attribute ds_params.attrs["disdrodb_psd_model"] = "GammaPSD" - return ds_params @@ -855,7 +883,6 @@ def get_exponential_parameters( # Add DSD model name to the attribute ds_params.attrs["disdrodb_psd_model"] = "ExponentialPSD" - return ds_params @@ -872,7 +899,7 @@ def _estimate_gamma_parameters_johnson( Lambda=3, **kwargs, ): - """Maximum likelihood estimation of Gamma model. + """Deprecated Maximum likelihood estimation of Gamma model. N(D) = N_t * lambda**(mu+1) / gamma(mu+1) D**mu exp(-lambda*D) @@ -963,15 +990,16 @@ def _cost_function(parameters, spectra, diameter_breaks): tilde_N_T = np.sum(drop_number_concentration * diameter_bin_width) # [m-3] # Estimate proportion of missing drops (Johnson's 2011 Eqs. 3) - D = diameter - p = 1 - np.sum((Lambda ** (mu + 1)) / gamma(mu + 1) * D**mu * np.exp(-Lambda * D) * diameter_bin_width) # [-] + with suppress_warnings(): + D = diameter + p = 1 - np.sum((Lambda ** (mu + 1)) / gamma(mu + 1) * D**mu * np.exp(-Lambda * D) * diameter_bin_width) # [-] - # Convert tilde_N_T to N_T using Johnson's 2013 Eqs. 3 and 4. - # - Adjusts for the proportion of drops not observed - N_T = tilde_N_T / (1 - p) # [m-3] + # Convert tilde_N_T to N_T using Johnson's 2013 Eqs. 3 and 4. + # - Adjusts for the proportion of drops not observed + N_T = tilde_N_T / (1 - p) # [m-3] - # Compute N0 - N0 = N_T * (Lambda ** (mu + 1)) / gamma(mu + 1) # [m-3 * mm^(-mu-1)] + # Compute N0 + N0 = N_T * (Lambda ** (mu + 1)) / gamma(mu + 1) # [m-3 * mm^(-mu-1)] # Compute Dm # Dm = (mu + 4)/ Lambda @@ -1015,28 +1043,423 @@ def get_gamma_parameters_johnson2014(ds, method="Nelder-Mead"): ####-----------------------------------------------------------------------------------------. -#### Grid Search -# Optimize Normalized Gamma +#### Grid Search (GS) + + +def _compute_rain_rate(ND, D, dD, V): + axis = 1 if ND.ndim == 2 else None + rain_rate = np.pi / 6 * np.sum(ND * V * (D / 1000) ** 3 * dD, axis=axis) * 3600 * 1000 + return rain_rate # mm/h + + +def _compute_lwc(ND, D, dD, rho_w=1000): + axis = 1 if ND.ndim == 2 else None + lwc = np.pi / 6.0 * (rho_w * 1000) * np.sum((D / 1000) ** 3 * ND * dD, axis=axis) + return lwc # g/m3 + + +def _compute_z(ND, D, dD): + axis = 1 if ND.ndim == 2 else None + z = np.sum(((D) ** 6 * ND * dD), axis=axis) # mm⁶·m⁻³ + Z = 10 * np.log10(z) + return Z + + +def _compute_cost_function(ND_obs, ND_preds, D, dD, V, target, transformation, error_order): + # Assume ND_obs of shape (D bins) and ND_preds of shape (# params, D bins) + if target == "ND": + if transformation == "identity": + errors = np.mean(np.abs(ND_obs[None, :] - ND_preds) ** error_order, axis=1) + if transformation == "log": + errors = np.mean(np.abs(np.log(ND_obs[None, :] + 1) - np.log(ND_preds + 1)) ** error_order, axis=1) + if transformation == "np.sqrt": + errors = np.mean(np.abs(np.sqrt(ND_obs[None, :]) - np.sqrt(ND_preds)) ** error_order, axis=1) + elif target == "Z": + errors = np.abs(_compute_z(ND_obs, D, dD) - _compute_z(ND_preds, D, dD)) + elif target == "R": + errors = np.abs(_compute_rain_rate(ND_obs, D, dD, V) - _compute_rain_rate(ND_preds, D, dD, V)) + elif target == "LWC": + errors = np.abs(_compute_lwc(ND_obs, D, dD) - _compute_lwc(ND_preds, D, dD)) + else: + raise ValueError("Invalid target") + return errors + + +def apply_exponential_gs( + Nt, + ND_obs, + V, + # Coords + D, + dD, + # Error options + target, + transformation, + error_order, +): + """Apply Grid Search for the ExponentialPSD distribution.""" + # Define set of mu values + lambda_arr = np.arange(0.01, 20, step=0.01) + # Perform grid search + with suppress_warnings(): + # Compute ND + N0_arr = Nt * lambda_arr + ND_preds = ExponentialPSD.formula(D=D[None, :], N0=N0_arr[:, None], Lambda=lambda_arr[:, None]) + + # Compute errors + errors = _compute_cost_function( + ND_obs=ND_obs, + ND_preds=ND_preds, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) -def _estimate_normalized_gamma_w_d50(Nd, D, D50, Nw, order=2): - # Define cost function - # - Parameter to be optimized on first position - def _cost_function(parameters, Nd, D, D50, Nw): - mu = parameters - cost = np.nansum(np.power(np.abs(Nd - NormalizedGammaPSD.formula(D=D, D50=D50, Nw=Nw, mu=mu)), order)) - return cost + # Identify best parameter set + best_index = np.argmin(errors) + return np.array([N0_arr[best_index].item(), lambda_arr[best_index].item()]) + + +def _apply_gamma_gs(mu_values, lambda_values, Nt, ND_obs, D, dD, V, target, transformation, error_order): + """Routine for GammaPSD parameters grid search.""" + # Define combinations of parameters for grid search + combo = np.meshgrid(mu_values, lambda_values, indexing="xy") + mu_arr = combo[0].ravel() + lambda_arr = combo[1].ravel() - # Optimize for mu + # Perform grid search with suppress_warnings(): - res = scipy.optimize.minimize_scalar(_cost_function, bounds=(-1, 20), args=(Nd, D, D50, Nw), method="bounded") - if not res.success or res.x > 20: - return np.nan - return res.x + # Compute ND + N0 = np.exp(np.log(Nt) + (mu_arr[:, None] + 1) * np.log(lambda_arr[:, None]) - gammaln(mu_arr[:, None] + 1)) + ND_preds = GammaPSD.formula(D=D[None, :], N0=N0, Lambda=lambda_arr[:, None], mu=mu_arr[:, None]) + + # Compute errors + errors = _compute_cost_function( + ND_obs=ND_obs, + ND_preds=ND_preds, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + # Best parameter + best_index = np.argmin(errors) + return N0[best_index].item(), mu_arr[best_index].item(), lambda_arr[best_index].item() + + +def apply_gamma_gs( + Nt, + ND_obs, + V, + # Coords + D, + dD, + # Error options + target, + transformation, + error_order, +): + """Estimate GammaPSD model parameters using Grid Search.""" + # Define initial set of parameters + mu_step = 0.5 + lambda_step = 0.5 + mu_values = np.arange(0.01, 20, step=mu_step) + lambda_values = np.arange(0, 60, step=lambda_step) + + # First round of GS + N0, mu, Lambda = _apply_gamma_gs( + mu_values=mu_values, + lambda_values=lambda_values, + Nt=Nt, + ND_obs=ND_obs, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + # Second round of GS + mu_values = np.arange(mu - mu_step * 2, mu + mu_step * 2, step=mu_step / 20) + lambda_values = np.arange(Lambda - lambda_step * 2, Lambda + lambda_step * 2, step=lambda_step / 20) + N0, mu, Lambda = _apply_gamma_gs( + mu_values=mu_values, + lambda_values=lambda_values, + Nt=Nt, + ND_obs=ND_obs, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + return np.array([N0, mu, Lambda]) + + +def _apply_lognormal_gs(mu_values, sigma_values, Nt, ND_obs, D, dD, V, target, transformation, error_order): + """Routine for LognormalPSD parameters grid search.""" + # Define combinations of parameters for grid search + combo = np.meshgrid(mu_values, sigma_values, indexing="xy") + mu_arr = combo[0].ravel() + sigma_arr = combo[1].ravel() + + # Perform grid search + with suppress_warnings(): + # Compute ND + ND_preds = LognormalPSD.formula(D=D[None, :], Nt=Nt, mu=mu_arr[:, None], sigma=sigma_arr[:, None]) + + # Compute errors + errors = _compute_cost_function( + ND_obs=ND_obs, + ND_preds=ND_preds, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + # Best parameter + best_index = np.argmin(errors) + return Nt, mu_arr[best_index].item(), sigma_arr[best_index].item() + + +def apply_lognormal_gs( + Nt, + ND_obs, + V, + # Coords + D, + dD, + # Error options + target, + transformation, + error_order, +): + """Estimate LognormalPSD model parameters using Grid Search.""" + # Define initial set of parameters + mu_step = 0.5 + sigma_step = 0.5 + mu_values = np.arange(0.01, 20, step=mu_step) # TODO: define realistic values + sigma_values = np.arange(0, 20, step=sigma_step) # TODO: define realistic values + + # First round of GS + Nt, mu, sigma = _apply_lognormal_gs( + mu_values=mu_values, + sigma_values=sigma_values, + Nt=Nt, + ND_obs=ND_obs, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + # Second round of GS + mu_values = np.arange(mu - mu_step * 2, mu + mu_step * 2, step=mu_step / 20) + sigma_values = np.arange(sigma - sigma_step * 2, sigma + sigma_step * 2, step=sigma_step / 20) + Nt, mu, sigma = _apply_lognormal_gs( + mu_values=mu_values, + sigma_values=sigma_values, + Nt=Nt, + ND_obs=ND_obs, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + return np.array([Nt, mu, sigma]) + + +def apply_normalized_gamma_gs( + Nw, + D50, + ND_obs, + V, + # Coords + D, + dD, + # Error options + target, + transformation, + error_order, +): + """Estimate NormalizedGammaPSD model parameters using Grid Search.""" + # Define set of mu values + mu_arr = np.arange(0.01, 20, step=0.01) + + # Perform grid search + with suppress_warnings(): + # Compute ND + ND_preds = NormalizedGammaPSD.formula(D=D[None, :], D50=D50, Nw=Nw, mu=mu_arr[:, None]) + + # Compute errors + errors = _compute_cost_function( + ND_obs=ND_obs, + ND_preds=ND_preds, + D=D, + dD=dD, + V=V, + target=target, + transformation=transformation, + error_order=error_order, + ) + + # Identify best parameter set + mu = mu_arr[np.argmin(errors)] + return np.array([Nw, mu, D50]) + + +def get_exponential_parameters_gs(ds, target="ND", transformation="log", error_order=1): + """Estimate the parameters of an Exponential distribution using Grid Search.""" + # "target": ["ND", "LWC", "Z", "R"] + # "transformation": "log", "identity", "sqrt", # only for drop_number_concentration + # "error_order": 1, # MAE/MSE ... only for drop_number_concentration + + # Define kwargs + kwargs = { + "D": ds["diameter_bin_center"].data, + "dD": ds["diameter_bin_width"].data, + "target": target, + "transformation": transformation, + "error_order": error_order, + } + + # Fit distribution in parallel + da_params = xr.apply_ufunc( + apply_exponential_gs, + # Variables varying over time + ds["Nt"], + ds["drop_number_concentration"], + ds["fall_velocity"], + # Other options + kwargs=kwargs, + # Settings + input_core_dims=[[], ["diameter_bin_center"], ["diameter_bin_center"]], + output_core_dims=[["parameters"]], + vectorize=True, + dask="parallelized", + dask_gufunc_kwargs={"output_sizes": {"parameters": 2}}, # lengths of the new output_core_dims dimensions. + output_dtypes=["float64"], + ) + + # Add parameters coordinates + da_params = da_params.assign_coords({"parameters": ["N0", "Lambda"]}) + # Create parameters dataset + ds_params = da_params.to_dataset(dim="parameters") + + # Add DSD model name to the attribute + ds_params.attrs["disdrodb_psd_model"] = "ExponentialPSD" + return ds_params + + +def get_gamma_parameters_gs(ds, target="ND", transformation="log", error_order=1): + """Compute Grid Search to identify mu and Lambda Gamma distribution parameters.""" + # "target": ["ND", "LWC", "Z", "R"] + # "transformation": "log", "identity", "sqrt", # only for drop_number_concentration + # "error_order": 1, # MAE/MSE ... only for drop_number_concentration + + # Define kwargs + kwargs = { + "D": ds["diameter_bin_center"].data, + "dD": ds["diameter_bin_width"].data, + "target": target, + "transformation": transformation, + "error_order": error_order, + } + + # Fit distribution in parallel + da_params = xr.apply_ufunc( + apply_gamma_gs, + # Variables varying over time + ds["Nt"], + ds["drop_number_concentration"], + ds["fall_velocity"], + # Other options + kwargs=kwargs, + # Settings + input_core_dims=[[], ["diameter_bin_center"], ["diameter_bin_center"]], + output_core_dims=[["parameters"]], + vectorize=True, + dask="parallelized", + dask_gufunc_kwargs={"output_sizes": {"parameters": 3}}, # lengths of the new output_core_dims dimensions. + output_dtypes=["float64"], + ) + + # Add parameters coordinates + da_params = da_params.assign_coords({"parameters": ["N0", "mu", "Lambda"]}) + + # Create parameters dataset + ds_params = da_params.to_dataset(dim="parameters") + + # Add DSD model name to the attribute + ds_params.attrs["disdrodb_psd_model"] = "GammaPSD" + return ds_params + + +def get_lognormal_parameters_gs(ds, target="ND", transformation="log", error_order=1): + """Compute Grid Search to identify mu and sigma lognormal distribution parameters.""" + # "target": ["ND", "LWC", "Z", "R"] + # "transformation": "log", "identity", "sqrt", # only for drop_number_concentration + # "error_order": 1, # MAE/MSE ... only for drop_number_concentration + + # Define kwargs + kwargs = { + "D": ds["diameter_bin_center"].data, + "dD": ds["diameter_bin_width"].data, + "target": target, + "transformation": transformation, + "error_order": error_order, + } + + # Fit distribution in parallel + da_params = xr.apply_ufunc( + apply_lognormal_gs, + # Variables varying over time + ds["Nt"], + ds["drop_number_concentration"], + ds["fall_velocity"], + # Other options + kwargs=kwargs, + # Settings + input_core_dims=[[], ["diameter_bin_center"], ["diameter_bin_center"]], + output_core_dims=[["parameters"]], + vectorize=True, + dask="parallelized", + dask_gufunc_kwargs={"output_sizes": {"parameters": 3}}, # lengths of the new output_core_dims dimensions. + output_dtypes=["float64"], + ) -def get_normalized_gamma_parameters(ds, order=2): - r"""Estimate $\mu$ of a Normalized Gamma distribution for a single observed DSD. + # Add parameters coordinates + da_params = da_params.assign_coords({"parameters": ["Nt", "mu", "sigma"]}) + + # Create parameters dataset + ds_params = da_params.to_dataset(dim="parameters") + + # Add DSD model name to the attribute + ds_params.attrs["disdrodb_psd_model"] = "LognormalPSD" + return ds_params + + +def get_normalized_gamma_parameters_gs(ds, target="ND", transformation="log", error_order=1): + r"""Estimate $\mu$ of a Normalized Gamma distribution using Grid Search. The D50 and Nw parameters of the Normalized Gamma distribution are derived empirically from the observed DSD. $\mu$ is derived by minimizing the errors between the observed DSD and modelled Normalized Gamma distribution. @@ -1057,58 +1480,56 @@ def get_normalized_gamma_parameters(ds, order=2): Returns ------- - mu: integer - Best estimate for DSD shape parameter $\mu$. - References - ---------- - Bringi and Chandrasekar 2001. - """ - # TODO: another order to square the D - # TODO: minimize rain rate / reflectivity / lwc ... - # Extract variables - Nd = ds["drop_number_concentration"] - D = ds["diameter_bin_center"] - - # Define D50 and Nw using empirical moments - D50 = ds["D50"] - Nw = ds["Nw"] - - # TODO: define here normalized (on ntot and lwc) gamma formula (with Dm or D50) - # - D50 or Dm - # - Normalized to Ntot or LWC. + """ + # "target": ["ND", "LWC", "Z", "R"] + # "transformation": "log", "identity", "sqrt", # only for drop_number_concentration + # "error_order": 1, # MAE/MSE ... only for drop_number_concentration # Define kwargs kwargs = { - "order": order, + "D": ds["diameter_bin_center"].data, + "dD": ds["diameter_bin_width"].data, + "target": target, + "transformation": transformation, + "error_order": error_order, } - # Estimate mu - mu = xr.apply_ufunc( - _estimate_normalized_gamma_w_d50, - Nd, - D, - D50, - Nw, + + # Fit distribution in parallel + da_params = xr.apply_ufunc( + apply_normalized_gamma_gs, + # Variables varying over time + ds["Nw"], + ds["D50"], + ds["drop_number_concentration"], + ds["fall_velocity"], + # Other options kwargs=kwargs, - input_core_dims=[["diameter_bin_center"], ["diameter_bin_center"], [], []], + # Settings + input_core_dims=[[], [], ["diameter_bin_center"], ["diameter_bin_center"]], + output_core_dims=[["parameters"]], vectorize=True, dask="parallelized", + dask_gufunc_kwargs={"output_sizes": {"parameters": 3}}, # lengths of the new output_core_dims dimensions. output_dtypes=["float64"], ) - # Create Dataset - ds = xr.Dataset() - ds["Nw"] = Nw - ds["mu"] = mu - ds["D50"] = D50 + + # Add parameters coordinates + da_params = da_params.assign_coords({"parameters": ["Nw", "mu", "D50"]}) + + # Create parameters dataset + ds_params = da_params.to_dataset(dim="parameters") # Add DSD model name to the attribute - ds.attrs["disdrodb_psd_model"] = "NormalizedGammaPSD" - return ds + ds_params.attrs["disdrodb_psd_model"] = "NormalizedGammaPSD" + return ds_params ####-----------------------------------------------------------------. -#### Methods of Moments +#### Methods of Moments (MOM) +# - M246 DEFAULT FOR GAMMA ? +# - LMOM (Johnson et al., 2014) def get_exponential_parameters_Zhang2008(moment_l, moment_m, l, m): # noqa: E741 @@ -1138,7 +1559,7 @@ def get_exponential_parameters_Zhang2008(moment_l, moment_m, l, m): # noqa: E74 den = moment_m * gamma(l + 1) Lambda = np.power(num / den, (1 / (m - l))) N0 = moment_l * np.power(Lambda, l + 1) / gamma(l + 1) - return Lambda, N0 + return N0, Lambda def get_exponential_parameters_M34(moment_3, moment_4): @@ -1155,13 +1576,7 @@ def get_exponential_parameters_M34(moment_3, moment_4): N0 = 256 / gamma(4) * moment_3**5 / moment_4**4 Dm = moment_4 / moment_3 Lambda = 4 / Dm - return Lambda, N0 - - -# M246 DEFAULT FOR GAMMA ? -# ----------------------------- - -# LMOM (Johnson et al., 2014) + return N0, Lambda def get_gamma_parameters_M012(M0, M1, M2): @@ -1173,11 +1588,12 @@ def get_gamma_parameters_M012(M0, M1, M2): Errors in Estimating Raindrop Size Distribution Parameters Employing Disdrometer and Simulated Raindrop Spectra. J. Appl. Meteor. Climatol., 48, 406-425, https://doi.org/10.1175/2008JAMC2026.1. """ + # TODO: really bad results. check formula ! G = M1**3 / M0 / M2 mu = 1 / (1 - G) - 2 Lambda = M0 / M1 * (mu + 1) N0 = Lambda ** (mu + 1) * M0 / gamma(mu + 1) - return mu, Lambda, N0 + return N0, mu, Lambda def get_gamma_parameters_M234(M2, M3, M4): @@ -1193,7 +1609,7 @@ def get_gamma_parameters_M234(M2, M3, M4): mu = 1 / (1 - G) - 4 Lambda = M2 / M3 * (mu + 3) N0 = Lambda ** (mu + 3) * M2 / gamma(mu + 3) - return mu, Lambda, N0 + return N0, mu, Lambda def get_gamma_parameters_M246(M2, M4, M6): @@ -1234,7 +1650,7 @@ def get_gamma_parameters_M246(M2, M4, M6): # N0 = M3 * Lambda ** (4 + mu) / gamma(4 + mu) # # Ulbrich et al., 1998 # N0 = M6 * Lambda ** (7.0 + mu) / gamma(7 + mu) - return mu, Lambda, N0 + return N0, mu, Lambda def get_gamma_parameters_M456(M4, M5, M6): @@ -1250,7 +1666,7 @@ def get_gamma_parameters_M456(M4, M5, M6): mu = 1 / (1 - G) - 6 Lambda = M4 / M5 * (mu + 5) N0 = Lambda ** (mu + 5) * M4 / gamma(mu + 5) - return mu, Lambda, N0 + return N0, mu, Lambda def get_gamma_parameters_M346(M3, M4, M6): @@ -1283,7 +1699,7 @@ def get_gamma_parameters_M346(M3, M4, M6): Lambda = (mu + 4) * M3 / M4 N0 = Lambda ** (mu + 4) * M3 / gamma(mu + 4) - return mu, Lambda, N0 + return N0, mu, Lambda def get_lognormal_parameters_M346(M3, M4, M6): @@ -1302,37 +1718,312 @@ def get_lognormal_parameters_M346(M3, M4, M6): Nt = np.exp((24 * L3 - 27 * L4 - 6 * L6) / 3) mu = (-10 * L3 + 13.5 * L4 - 3.5 * L6) / 3 sigma = (2 * L3 - 3 * L4 + L6) / 3 - return mu, sigma, Nt + return Nt, mu, sigma + + +def _get_gamma_parameters_mom(ds: xr.Dataset, mom_method: str) -> xr.Dataset: + # Get the correct function and list of variables for the requested method + func, needed_moments = MOM_METHODS_DICT["GammaPSD"][mom_method] + + # Extract the required arrays from the dataset + arrs = [ds[var_name] for var_name in needed_moments] + + # Apply the function. This will produce (mu, Lambda, N0) with the same coords/shapes as input data + N0, mu, Lambda = func(*arrs) + + # Return a new Dataset containing the results + ds = xr.Dataset( + { + "N0": N0, + "mu": mu, + "Lambda": Lambda, + }, + coords=ds.coords, + ) + return ds + + +def _get_lognormal_parameters_mom(ds: xr.Dataset, mom_method: str) -> xr.Dataset: + # Get the correct function and list of variables for the requested method + func, needed_moments = MOM_METHODS_DICT["LognormalPSD"][mom_method] + + # Extract the required arrays from the dataset + arrs = [ds[var_name] for var_name in needed_moments] + + # Apply the function. This will produce (mu, Lambda, N0) with the same coords/shapes as input data + Nt, mu, sigma = func(*arrs) + + # Return a new Dataset containing the results + ds = xr.Dataset( + { + "Nt": Nt, + "mu": mu, + "sigma": sigma, + }, + coords=ds.coords, + ) + return ds + + +def _get_exponential_parameters_mom(ds: xr.Dataset, mom_method: str) -> xr.Dataset: + # Get the correct function and list of variables for the requested method + func, needed_moments = MOM_METHODS_DICT["ExponentialPSD"][mom_method] + + # Extract the required arrays from the dataset + arrs = [ds[var_name] for var_name in needed_moments] + + # Apply the function. This will produce (mu, Lambda, N0) with the same coords/shapes as input data + N0, Lambda = func(*arrs) + + # Return a new Dataset containing the results + ds = xr.Dataset( + { + "N0": N0, + "Lambda": Lambda, + }, + coords=ds.coords, + ) + return ds ####--------------------------------------------------------------------------------------. -#### Wrappers for fitting +#### Routines dictionary + + +MOM_METHODS_DICT = { + "GammaPSD": { + # "M012": (get_gamma_parameters_M012, ["M0", "M1", "M2"]), + "M234": (get_gamma_parameters_M234, ["M2", "M3", "M4"]), + "M246": (get_gamma_parameters_M246, ["M2", "M4", "M6"]), + "M456": (get_gamma_parameters_M456, ["M4", "M5", "M6"]), + "M346": (get_gamma_parameters_M346, ["M3", "M4", "M6"]), + }, + "LognormalPSD": { + "M346": (get_lognormal_parameters_M346, ["M3", "M4", "M6"]), + }, + "ExponentialPSD": { + "M234": (get_exponential_parameters_M34, ["M3", "M4"]), + }, +} -distribution_dictionary = { - "gamma": get_gamma_parameters, - "lognormal": get_lognormal_parameters, - "exponential": get_exponential_parameters, - "normalized_gamma": get_normalized_gamma_parameters, +OPTIMIZATION_ROUTINES_DICT = { + "MOM": { + "GammaPSD": _get_gamma_parameters_mom, + "LognormalPSD": _get_lognormal_parameters_mom, + "ExponentialPSD": _get_exponential_parameters_mom, + }, + "GS": { + "GammaPSD": get_gamma_parameters_gs, + "NormalizedGammaPSD": get_normalized_gamma_parameters_gs, + "LognormalPSD": get_lognormal_parameters_gs, + "ExponentialPSD": get_exponential_parameters_gs, + }, + "ML": { + "GammaPSD": get_gamma_parameters, + "LognormalPSD": get_lognormal_parameters, + "ExponentialPSD": get_exponential_parameters, + }, } -def available_distributions(): - """Return the lst of available PSD distributions.""" - return list(distribution_dictionary) +def available_mom_methods(psd_model): + """Implemented MOM methods for a given PSD model.""" + return list(MOM_METHODS_DICT[psd_model]) -def estimate_model_parameters( +def available_optimization(psd_model): + """Implemented fitting methods for a given PSD model.""" + return [opt for opt in list(OPTIMIZATION_ROUTINES_DICT) if psd_model in OPTIMIZATION_ROUTINES_DICT[opt]] + + +####--------------------------------------------------------------------------------------. +#### Argument checkers + + +def check_psd_model(psd_model, optimization): + """Check valid psd_model argument.""" + valid_psd_models = list(OPTIMIZATION_ROUTINES_DICT[optimization]) + if psd_model not in valid_psd_models: + msg = ( + f"{optimization} optimization is not available for 'psd_model' {psd_model}. " + f"Accepted PSD models are {valid_psd_models}." + ) + raise ValueError(msg) + + +def check_target(target): + """Check valid target argument.""" + valid_targets = ["ND", "R", "Z", "LWC"] + if target not in valid_targets: + raise ValueError(f"Invalid 'target' {target}. Valid targets are {valid_targets}.") + return target + + +def check_transformation(transformation): + """Check valid transformation argument.""" + valid_transformation = ["identity", "log", "sqrt"] + if transformation not in valid_transformation: + raise ValueError( + f"Invalid 'transformation' {transformation}. Valid transformations are {transformation}.", + ) + return transformation + + +def check_likelihood(likelihood): + """Check valid likelihood argument.""" + valid_likelihood = ["multinomial", "poisson"] + if likelihood not in valid_likelihood: + raise ValueError(f"Invalid 'likelihood' {likelihood}. Valid values are {valid_likelihood}.") + return likelihood + + +def check_truncated_likelihood(truncated_likelihood): + """Check valid truncated_likelihood argument.""" + if not isinstance(truncated_likelihood, bool): + raise TypeError(f"Invalid 'truncated_likelihood' argument {truncated_likelihood}. Must be True or False.") + return truncated_likelihood + + +def check_probability_method(probability_method): + """Check valid probability_method argument.""" + # Check valid probability_method + valid_probability_method = ["cdf", "pdf"] + if probability_method not in valid_probability_method: + raise ValueError( + f"Invalid 'probability_method' {probability_method}. Valid values are {valid_probability_method}.", + ) + return probability_method + + +def check_optimizer(optimizer): + """Check valid optimizer argument.""" + # Check valid probability_method + valid_optimizer = ["Nelder-Mead", "Powell", "L-BFGS-B"] + if optimizer not in valid_optimizer: + raise ValueError( + f"Invalid 'optimizer' {optimizer}. Valid values are {valid_optimizer}.", + ) + return optimizer + + +def check_mom_methods(mom_methods, psd_model): + """Check valid mom_methods arguments.""" + if isinstance(mom_methods, str): + mom_methods = [mom_methods] + valid_mom_methods = available_mom_methods(psd_model) + invalid_mom_methods = np.array(mom_methods)[np.isin(mom_methods, valid_mom_methods, invert=True)] + if len(invalid_mom_methods) > 0: + raise ValueError( + f"Unknown mom_methods '{invalid_mom_methods}' for {psd_model}. Choose from {valid_mom_methods}.", + ) + return mom_methods + + +def check_optimization(optimization): + """Check valid optimization argument.""" + valid_optimization = list(OPTIMIZATION_ROUTINES_DICT) + if optimization not in valid_optimization: + raise ValueError( + f"Invalid 'optimization' {optimization}. Valid procedure are {valid_optimization}.", + ) + return optimization + + +def check_optimization_kwargs(optimization_kwargs, optimization, psd_model): + """Check valid optimization_kwargs.""" + dict_arguments = { + "ML": { + "init_method": None, + "probability_method": check_probability_method, + "likelihood": check_likelihood, + "truncated_likelihood": check_truncated_likelihood, + "optimizer": check_optimizer, + }, + "GS": { + "target": check_target, + "transformation": check_transformation, + "error_order": None, + }, + "MOM": { + "mom_methods": None, + }, + } + optimization = check_optimization(optimization) + check_psd_model(psd_model=psd_model, optimization=optimization) + + # Retrieve the expected arguments for the given optimization method + expected_arguments = dict_arguments.get(optimization, {}) + + # Check for missing arguments in optimization_kwargs + missing_args = [arg for arg in expected_arguments if arg not in optimization_kwargs] + if missing_args: + raise ValueError(f"Missing required arguments for {optimization} optimization: {missing_args}") + + # Validate argument values + _ = [check(optimization_kwargs[arg]) for arg, check in expected_arguments.items() if callable(check)] + + # Further special checks + if optimization == "MOM": + _ = check_mom_methods(mom_methods=optimization_kwargs["mom_methods"], psd_model=psd_model) + if optimization == "ML": + if optimization_kwargs["init_method"] is not None: + _ = check_mom_methods(mom_methods=optimization_kwargs["init_method"], psd_model=psd_model) + + +####--------------------------------------------------------------------------------------. +#### Wrappers for fitting + + +def get_mom_parameters(ds: xr.Dataset, psd_model: str, mom_methods: str) -> xr.Dataset: + """ + Compute PSD model parameters using various method-of-moments (MOM) approaches. + + The method is specified by the `mom_methods` acronym, e.g. 'M012', 'M234', 'M246'. + + Parameters + ---------- + ds : xr.Dataset + An xarray Dataset with the required moments M0...M6 as data variables. + mom_methods: str or list + Valid MOM methods are {'M012', 'M234', 'M246', 'M456', 'M346'}. + + Returns + ------- + xr.Dataset + A Dataset containing mu, Lambda, and N0 variables. + If multiple mom_methods are specified, the dataset has the dimension mom_method. + + """ + # Check inputs + check_psd_model(psd_model=psd_model, optimization="MOM") + mom_methods = check_mom_methods(mom_methods, psd_model=psd_model) + + # Retrieve function + func = OPTIMIZATION_ROUTINES_DICT["MOM"][psd_model] + + # Compute parameters + if len(mom_methods) == 1: + ds = func(ds=ds, mom_method=mom_methods[0]) + ds.attrs["mom_method"] = mom_methods[0] + return ds + list_ds = [func(ds=ds, mom_method=mom_method) for mom_method in mom_methods] + ds = xr.concat(list_ds, dim="mom_method") + ds = ds.assign_coords({"mom_method": mom_methods}) + return ds + + +def get_ml_parameters( ds, - distribution, + psd_model, + init_method=None, probability_method="cdf", likelihood="multinomial", truncated_likelihood=True, optimizer="Nelder-Mead", - order=2, ): """ - Estimate model parameters for a given distribution. + Estimate model parameters for a given distribution using Maximum Likelihood. Parameters ---------- @@ -1344,19 +2035,19 @@ def estimate_model_parameters( - ``diameter_bin_lower``: The lower bounds of the diameter bins. - ``diameter_bin_upper``: The upper bounds of the diameter bins. - ``diameter_bin_center``: The center values of the diameter bins. - distribution : str - The type of distribution to fit. See ``available_distributions()`` for the available distributions. + psd_model : str + The PSD model to fit. See ``available_psd_models()``. + init_method: str or list + The method(s) of moments used to initialize the PSD model parameters. + See ``available_mom_methods(psd_model)``. probability_method : str, optional Method to compute probabilities. The default is ``cdf``. likelihood : str, optional Likelihood function to use for fitting. The default is ``multinomial``. truncated_likelihood : bool, optional - Whether to use truncated likelihood. The default is ``True``. + Whether to use Truncated Maximum Likelihood (TML). The default is ``True``. optimizer : str, optional Optimization method to use. The default is ``Nelder-Mead``. - order : int, optional - The order parameter for the ``normalized_gamma`` distribution. - The default value is 2. Returns ------- @@ -1364,45 +2055,78 @@ def estimate_model_parameters( The dataset containing the estimated parameters. """ - # TODO: initialize with moment methods - # TODO: optimize for rain rate ... + # -----------------------------------------------------------------------------. + # Check arguments + check_psd_model(psd_model, optimization="ML") + likelihood = check_likelihood(likelihood) + probability_method = check_probability_method(probability_method) + optimizer = check_optimizer(optimizer) - # Likelihood poisson ... - # Truncated Maximum Likelihood method (TML) - # Constrained TML - # Integrating the PDFs of the distribution over the bin ranges. This accounts for the irregular bin widths + # Check valid init_method + if init_method is not None: + init_method = check_mom_methods(mom_methods=init_method, psd_model=psd_model) - # Check valid distribution - valid_distribution = list(distribution_dictionary) - if distribution not in valid_distribution: - raise ValueError(f"Invalid distribution {distribution}. Valid values are {valid_distribution}.") + # Retrieve estimation function + func = OPTIMIZATION_ROUTINES_DICT["ML"][psd_model] - # Check valid likelihood - valid_likelihood = ["multinomial", "poisson"] - if likelihood not in valid_likelihood: - raise ValueError(f"Invalid likelihood {likelihood}. Valid values are {valid_likelihood}.") + # Retrieve parameters + ds_params = func( + ds=ds, + init_method=init_method, + probability_method=probability_method, + likelihood=likelihood, + truncated_likelihood=truncated_likelihood, + optimizer=optimizer, + ) + # Return dataset with parameters + return ds_params - # Check valid probability_method - valid_probability_method = ["cdf", "pdf"] - if likelihood not in valid_likelihood: - raise ValueError( - f"Invalid probability_method {probability_method}. Valid values are {valid_probability_method}.", - ) + +def get_gs_parameters(ds, psd_model, target="ND", transformation="log", error_order=1): + # Check valid psd_model + check_psd_model(psd_model, optimization="GS") + + # Check valid target + target = check_target(target) + + # Check valid transformation + transformation = check_transformation(transformation) # Retrieve estimation function - func = distribution_dictionary[distribution] + func = OPTIMIZATION_ROUTINES_DICT["GS"][psd_model] - # Retrieve parameters - if distribution in ["gamma", "lognormal", "exponential"]: - ds_params = func( - ds=ds, - probability_method=probability_method, - likelihood=likelihood, - truncated_likelihood=truncated_likelihood, - optimizer=optimizer, - ) - else: # normalized_gamma - ds_params = get_normalized_gamma_parameters(ds=ds, order=order) + # Estimate parameters + ds_params = func(ds, target=target, transformation=transformation, error_order=error_order) # Return dataset with parameters return ds_params + + +def estimate_model_parameters( + ds, + psd_model, + optimization, + optimization_kwargs, +): + + optimization = check_optimization(optimization) + check_optimization_kwargs(optimization_kwargs=optimization_kwargs, optimization=optimization, psd_model=psd_model) + + # Define function + dict_func = { + "ML": get_ml_parameters, + "MOM": get_mom_parameters, + "GS": get_gs_parameters, + } + func = dict_func[optimization] + + # Retrieve parameters + ds_params = func(ds, psd_model=psd_model, **optimization_kwargs) + + # Finalize attributes + ds_params.attrs["disdrodb_psd_model"] = psd_model + ds_params.attrs["disdrodb_psd_optimization"] = optimization + if optimization == "GS": + ds_params.attrs["disdrodb_psd_optimization_target"] = optimization_kwargs["target"] + + return ds_params diff --git a/disdrodb/psd/models.py b/disdrodb/psd/models.py index 92b2b472..41e1e28b 100644 --- a/disdrodb/psd/models.py +++ b/disdrodb/psd/models.py @@ -28,7 +28,8 @@ import numpy as np import xarray as xr from pytmatrix.psd import PSD -from scipy.special import gamma +from scipy.special import gamma as gamma_f +from scipy.stats import expon, gamma, lognorm # psd.log_likelihood # psd.moment(order) @@ -65,6 +66,11 @@ def get_psd_model(psd_model): return PSD_MODELS_DICT[psd_model] +def get_psd_model_formula(psd_model): + """Retrieve the PSD formula.""" + return PSD_MODELS_DICT[psd_model].formula + + def create_psd(psd_model, parameters): # TODO: check name around """Define a PSD from a dictionary or xr.Dataset of parameters.""" psd_class = get_psd_model(psd_model) @@ -176,14 +182,21 @@ class LognormalPSD(XarrayPSD): """ - def __init__(self, Nt=1.0, mu=0.0, sigma=1.0, Dmin=0, Dmax=None): + def __init__(self, Nt=1.0, mu=0.0, sigma=1.0, Dmin=0, Dmax=None, coverage=0.999): self.Nt = Nt self.mu = mu self.sigma = sigma + self.parameters = {"Nt": self.Nt, "mu": self.mu, "sigma": self.sigma} + # Define Dmin and Dmax self.Dmin = Dmin - self.Dmax = mu + sigma * 4 if Dmax is None else Dmax - - self.parameters = {"Nt": Nt, "mu": self.mu, "sigma": self.sigma} + if Dmax is not None: + self.Dmax = Dmax + else: + dmax = lognorm.ppf(coverage, s=self.sigma, scale=np.exp(self.mu)) + if isinstance(self.sigma, xr.DataArray): + self.Dmax = xr.DataArray(dmax, dims=self.sigma.dims, coords=self.sigma.coords) + else: + self.Dmax = dmax @staticmethod def required_parameters(): @@ -267,13 +280,23 @@ class ExponentialPSD(XarrayPSD): Returns 0 for all diameters larger than Dmax. """ - def __init__(self, N0=1.0, Lambda=1.0, Dmin=0, Dmax=None): + def __init__(self, N0=1.0, Lambda=1.0, Dmin=0, Dmax=None, coverage=0.999): + # Define parameters self.N0 = N0 self.Lambda = Lambda - self.Dmax = 11.0 / Lambda if Dmax is None else Dmax - self.Dmin = Dmin self.parameters = {"N0": self.N0, "Lambda": self.Lambda} + # Define Dmin and Dmax + self.Dmin = Dmin + if Dmax is not None: + self.Dmax = Dmax + else: + dmax = expon.ppf(coverage, scale=1 / self.Lambda) + if isinstance(self.Lambda, xr.DataArray): + self.Dmax = xr.DataArray(dmax, dims=self.Lambda.dims, coords=self.Lambda.coords) + else: + self.Dmax = dmax + @staticmethod def required_parameters(): """Return the required parameters of the PSD.""" @@ -363,10 +386,22 @@ class GammaPSD(ExponentialPSD): J. Appl. Meteor. Climatol., 24, 580-590, https://doi.org/10.1175/1520-0450(1985)024<0580:TEODSD>2.0.CO;2 """ - def __init__(self, N0=1.0, mu=0.0, Lambda=1.0, Dmin=0, Dmax=None): - super().__init__(N0=N0, Lambda=Lambda, Dmin=Dmin, Dmax=Dmax) + def __init__(self, N0=1.0, mu=0.0, Lambda=1.0, Dmin=0, Dmax=None, coverage=0.999): + # Define parameters + self.N0 = N0 + self.Lambda = Lambda self.mu = mu - self.parameters = {"N0": self.N0, "mu": mu, "Lambda": self.Lambda} + self.parameters = {"N0": self.N0, "mu": self.mu, "Lambda": self.Lambda} + # Define Dmin and Dmax + self.Dmin = Dmin + if Dmax is not None: + self.Dmax = Dmax + else: + dmax = gamma.ppf(coverage, a=self.mu + 1.0, scale=1.0 / self.Lambda) + if isinstance(self.Lambda, xr.DataArray): + self.Dmax = xr.DataArray(dmax, dims=self.Lambda.dims, coords=self.Lambda.coords) + else: + self.Dmax = dmax @staticmethod def required_parameters(): @@ -530,7 +565,7 @@ def from_parameters(parameters): def formula(D, Nw, D50, mu): """Calculates the NormalizedGamma PSD values.""" d_ratio = D / D50 - nf = Nw * 6.0 / 3.67**4 * (3.67 + mu) ** (mu + 4) / gamma(mu + 4) + nf = Nw * 6.0 / 3.67**4 * (3.67 + mu) ** (mu + 4) / gamma_f(mu + 4) return nf * np.exp(mu * np.log(d_ratio) - (3.67 + mu) * d_ratio) def parameters_summary(self): @@ -651,7 +686,7 @@ def __eq__(self, other): def get_exponential_moment(N0, Lambda, moment): """Compute exponential distribution moments.""" - return N0 * gamma(moment + 1) / Lambda ** (moment + 1) + return N0 * gamma_f(moment + 1) / Lambda ** (moment + 1) def get_gamma_moment_v1(N0, mu, Lambda, moment): @@ -664,8 +699,8 @@ def get_gamma_moment_v1(N0, mu, Lambda, moment): Combining Reflectivity Profile and Path-integrated Attenuation. J. Atmos. Oceanic Technol., 8, 259-270, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2 """ - # Zhang et al 2001: N0 * gamma(mu + moment + 1) * Lambda ** (-(mu + moment + 1)) - return N0 * gamma(mu + moment + 1) / Lambda ** (mu + moment + 1) + # Zhang et al 2001: N0 * gamma_f(mu + moment + 1) * Lambda ** (-(mu + moment + 1)) + return N0 * gamma_f(mu + moment + 1) / Lambda ** (mu + moment + 1) def get_gamma_moment_v2(Nt, mu, Lambda, moment): @@ -678,7 +713,7 @@ def get_gamma_moment_v2(Nt, mu, Lambda, moment): Combining Reflectivity Profile and Path-integrated Attenuation. J. Atmos. Oceanic Technol., 8, 259-270, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2 """ - return Nt * gamma(mu + moment + 1) / gamma(mu + 1) / Lambda**moment + return Nt * gamma_f(mu + moment + 1) / gamma_f(mu + 1) / Lambda**moment def get_lognormal_moment(Nt, sigma, mu, moment): diff --git a/disdrodb/scattering/routines.py b/disdrodb/scattering/routines.py index ea2dfa03..acb9b571 100644 --- a/disdrodb/scattering/routines.py +++ b/disdrodb/scattering/routines.py @@ -16,7 +16,7 @@ # -----------------------------------------------------------------------------. """Implement PSD scattering routines.""" -from itertools import product +import itertools import dask import numpy as np @@ -27,6 +27,7 @@ from disdrodb.psd.models import create_psd, get_required_parameters from disdrodb.scattering.axis_ratio import check_axis_ratio, get_axis_ratio_method +from disdrodb.utils.warnings import suppress_warnings # Wavelengths for which the refractive index is defined in pytmatrix (in mm) wavelength_dict = { @@ -134,12 +135,12 @@ def _estimate_empirical_radar_parameters( scatterer.psd = BinnedPSD(bin_edges, drop_number_concentration) # Get radar variables - # with suppress_warnings(): - try: - radar_vars = compute_radar_variables(scatterer) - output = radar_vars if output_dictionary else np.array(list(radar_vars.values())) - except Exception: - output = null_output + with suppress_warnings(): + try: + radar_vars = compute_radar_variables(scatterer) + output = radar_vars if output_dictionary else np.array(list(radar_vars.values())) + except Exception: + output = null_output return output @@ -161,13 +162,13 @@ def _estimate_model_radar_parameters( scatterer.psd = create_psd(psd_model, parameters) # Get radar variables - # with suppress_warnings(): - radar_vars = compute_radar_variables(scatterer) - try: + with suppress_warnings(): radar_vars = compute_radar_variables(scatterer) - output = radar_vars if output_dictionary else np.array(list(radar_vars.values())) - except Exception: - output = null_output + try: + radar_vars = compute_radar_variables(scatterer) + output = radar_vars if output_dictionary else np.array(list(radar_vars.values())) + except Exception: + output = null_output return output @@ -423,7 +424,7 @@ def get_radar_parameters( "axis_ratio": ar.item(), "diameter_max": d_max.item(), } - for rb, cas, ar, d_max in product(radar_band, canting_angle_std, axis_ratio, diameter_max) + for rb, cas, ar, d_max in itertools.product(radar_band, canting_angle_std, axis_ratio, diameter_max) ] # Compute radar variables for each configuration in parallel diff --git a/disdrodb/tests/test_api/test_api_path.py b/disdrodb/tests/test_api/test_api_path.py index 7590c2f9..dd08141a 100644 --- a/disdrodb/tests/test_api/test_api_path.py +++ b/disdrodb/tests/test_api/test_api_path.py @@ -87,14 +87,14 @@ def test_define_l0b_filename(product): dims=["time"], coords={"time": pd.date_range(start=start_date, end=end_date), "sample_interval": sample_interval}, ) - + # Define expected results # TODO: MODIFY ! - if product == "L0B": + if product == "L0B": expected_name = f"{product}.CAMPAIGN_NAME.STATION_NAME.s20190326000000.e20210208000000.{PRODUCT_VERSION}.nc" - else: + else: expected_name = f"{product}.{sample_interval_str}.CAMPAIGN_NAME.STATION_NAME.s20190326000000.e20210208000000.{PRODUCT_VERSION}.nc" - + # Test the function define_filename_func = define_l0b_filename if product == "L0B" else define_l0c_filename res = define_filename_func(ds, campaign_name, station_name) diff --git a/disdrodb/utils/logger.py b/disdrodb/utils/logger.py index 8338dd9b..42f55080 100644 --- a/disdrodb/utils/logger.py +++ b/disdrodb/utils/logger.py @@ -212,7 +212,7 @@ def create_product_logs( # Product options sample_interval=None, rolling=None, - distribution=None, + model_name=None, # Logs list list_logs=None, # If none, list it ! ): @@ -245,8 +245,8 @@ def create_product_logs( The sample interval for L2E option. Default is None. rolling : str, optional The rolling option for L2E. Default is None. - distribution : str, optional - The distribution type for L2M option. Default is None. + model_name : str, optional + The model name for L2M. Default is None. list_logs : list, optional List of log file paths. If None, the function will list the log files. @@ -272,7 +272,7 @@ def create_product_logs( sample_interval=sample_interval, rolling=rolling, # Option for L2M - distribution=distribution, + model_name=model_name, ) list_logs = list_files(logs_dir, glob_pattern="*", recursive=True) @@ -305,7 +305,7 @@ def create_product_logs( sample_interval=sample_interval, rolling=rolling, # L2M option - distribution=distribution, + model_name=model_name, # Filename options add_version=False, add_time_period=False, @@ -324,7 +324,7 @@ def create_product_logs( sample_interval=sample_interval, rolling=rolling, # L2M option - distribution=distribution, + model_name=model_name, # Filename options add_version=False, add_time_period=False, diff --git a/disdrodb/utils/warnings.py b/disdrodb/utils/warnings.py new file mode 100644 index 00000000..536dbe9e --- /dev/null +++ b/disdrodb/utils/warnings.py @@ -0,0 +1,29 @@ +#!/usr/bin/env python3 + +# -----------------------------------------------------------------------------. +# Copyright (c) 2021-2023 DISDRODB developers +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . +# -----------------------------------------------------------------------------. +"""Warning utilities.""" +import warnings +from contextlib import contextmanager + +@contextmanager +def suppress_warnings(): + """Context manager suppressing RuntimeWarnings and UserWarnings.""" + with warnings.catch_warnings(): + warnings.simplefilter("ignore", RuntimeWarning) + warnings.simplefilter("ignore", UserWarning) + yield \ No newline at end of file