This repository has been archived by the owner on May 25, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 926
/
Copy pathgenerate_predictions_for_condition.py
87 lines (59 loc) · 3.26 KB
/
generate_predictions_for_condition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import os
import sys
import numpy as np
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from cakechat.utils.env import init_cuda_env
init_cuda_env()
from cakechat.config import QUESTIONS_CORPUS_NAME, INPUT_SEQUENCE_LENGTH, INPUT_CONTEXT_SIZE, \
PREDICTION_MODES, PREDICTION_MODE_FOR_TESTS, DEFAULT_CONDITION, RANDOM_SEED, INTX
from cakechat.utils.text_processing import get_tokens_sequence, replace_out_of_voc_tokens
from cakechat.utils.dataset_loader import get_tokenized_test_lines
from cakechat.dialog_model.model_utils import transform_context_token_ids_to_sentences, \
transform_contexts_to_token_ids, lines_to_context
from cakechat.dialog_model.inference import get_nn_responses
from cakechat.dialog_model.factory import get_trained_model
np.random.seed(seed=RANDOM_SEED)
def load_corpus(nn_model, corpus_name):
return get_tokenized_test_lines(corpus_name, set(nn_model.index_to_token.values()))
def process_text(nn_model, text):
tokenized_line = get_tokens_sequence(text)
return [replace_out_of_voc_tokens(tokenized_line, nn_model.token_to_index)]
def transform_lines_to_contexts_token_ids(tokenized_lines, nn_model):
return transform_contexts_to_token_ids(
list(lines_to_context(tokenized_lines)), nn_model.token_to_index, INPUT_SEQUENCE_LENGTH, INPUT_CONTEXT_SIZE)
def predict_for_condition_id(nn_model, contexts, condition_id, prediction_mode=PREDICTION_MODE_FOR_TESTS):
condition_ids = np.array([condition_id] * contexts.shape[0], dtype=INTX)
responses = get_nn_responses(
contexts, nn_model, mode=prediction_mode, output_candidates_num=1, condition_ids=condition_ids)
return [candidates[0] for candidates in responses]
def print_predictions(nn_model, contexts_token_ids, condition, prediction_mode=PREDICTION_MODE_FOR_TESTS):
x_sents = transform_context_token_ids_to_sentences(contexts_token_ids, nn_model.index_to_token)
y_sents = predict_for_condition_id(
nn_model, contexts_token_ids, nn_model.condition_to_index[condition], prediction_mode=prediction_mode)
for x, y in zip(x_sents, y_sents):
print('condition: {}; context: {}'.format(condition, x))
print('response: {}'.format(y))
print()
def parse_args():
argparser = argparse.ArgumentParser()
argparser.add_argument(
'-p',
'--prediction-mode',
action='store',
help='Prediction mode',
choices=PREDICTION_MODES,
default=PREDICTION_MODE_FOR_TESTS)
argparser.add_argument('-d', '--data', action='store', help='Corpus name', default=QUESTIONS_CORPUS_NAME)
argparser.add_argument('-t', '--text', action='store', help='Context message that feed to the model', default=None)
argparser.add_argument('-c', '--condition', action='store', help='Condition', default=DEFAULT_CONDITION)
return argparser.parse_args()
if __name__ == '__main__':
args = parse_args()
nn_model = get_trained_model()
if args.text:
tokenized_lines = process_text(nn_model, args.text)
else:
tokenized_lines = load_corpus(nn_model, args.data)
contexts_token_ids = transform_lines_to_contexts_token_ids(tokenized_lines, nn_model)
print_predictions(nn_model, contexts_token_ids, args.condition, prediction_mode=args.prediction_mode)