forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knet_s3_fcn_resnet50_ade20k_512x512_80k.yml
63 lines (58 loc) · 1.21 KB
/
knet_s3_fcn_resnet50_ade20k_512x512_80k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
_base_: '../_base_/ade20k.yml'
batch_size: 4
iters: 80000
model:
type: KNet
backbone:
type: ResNet50_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz
backbone_indices: [3]
kernel_update_head_params:
num_classes: 150
num_heads: 8
num_mask_fcs: 1
feedforward_channels: 2048
in_channels: 512
out_channels: 512
dropout: 0.0
conv_kernel_size: 1
with_ffn: True
num_stages: 3
kernel_generate_head_params:
head_layer: FCNKernelHead
num_classes: 150
in_channels: 2048
num_convs: 2
concat_input: True
channels: 512
dropout_prob: 0.1
channels: 512
dropout_prob: 0.1
enable_auxiliary_loss: True
optimizer:
_inherited_: False
type: AdamW
weight_decay: 0.0005
grad_clip_cfg:
name: ClipGradByNorm
clip_norm: 1
lr_scheduler:
_inherited_: False
type: MultiStepDecay
milestones: [60000, 72000]
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.0001
loss:
types:
- type: CrossEntropyLoss
types:
- type: CrossEntropyLoss
types:
- type: CrossEntropyLoss
types:
- type: CrossEntropyLoss
types:
- type: CrossEntropyLoss
coef: [1, 1, 1, 1, 0.4]