-
Notifications
You must be signed in to change notification settings - Fork 45
/
plot_beta.py
44 lines (36 loc) · 1.41 KB
/
plot_beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python2.7
import argparse
import numpy as np
import matplotlib.pyplot as plt
def plot_beta():
'''plot beta over training
'''
beta = args.beta
scale = args.scale
beta_min = args.beta_min
num_epoch = args.num_epoch
epoch_size = int(float(args.num_examples) / args.batch_size)
x = np.arange(num_epoch*epoch_size)
y = beta * np.power(scale, x)
y = np.maximum(y, beta_min)
epoch_x = np.arange(num_epoch) * epoch_size
epoch_y = beta * np.power(scale, epoch_x)
epoch_y = np.maximum(epoch_y, beta_min)
# plot beta descent curve
plt.semilogy(x, y)
plt.semilogy(epoch_x, epoch_y, 'ro')
plt.title('beta descent')
plt.ylabel('beta')
plt.xlabel('epoch')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num-examples', type=int, default=60000, help="number of training data")
parser.add_argument('--batch-size', type=int, default=256, help="batch size of mini-batch")
parser.add_argument('--beta', type=float, default=100, help="initial beta")
parser.add_argument('--scale', type=float, default=0.99, help="scale in beta descent")
parser.add_argument('--beta-min', type=float, default=1e-2, help="minimun beta during training")
parser.add_argument('--num-epoch', type=int, default=20, help="number of epoches to train")
args = parser.parse_args()
print args
plot_beta()