forked from KeckCAVES/LidarViewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CylinderPrimitive.cpp
329 lines (279 loc) · 9.32 KB
/
CylinderPrimitive.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/***********************************************************************
CylinderPrimitive - Class for cylinders extracted from point clouds.
Copyright (c) 2007-2011 Oliver Kreylos
This file is part of the LiDAR processing and analysis package.
The LiDAR processing and analysis package is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The LiDAR processing and analysis package is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the LiDAR processing and analysis package; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
***********************************************************************/
#define GEOMETRY_NONSTANDARD_TEMPLATES 1
#include <iostream>
#include <Misc/ThrowStdErr.h>
#include <IO/File.h>
#include <Cluster/MulticastPipe.h>
#include <Math/Math.h>
#include <GL/gl.h>
#include <GL/GLColorTemplates.h>
#include <GL/GLContextData.h>
#include <GL/GLGeometryWrappers.h>
#include "LidarOctree.h"
#include "LidarSelectionExtractor.h"
#include "CylinderFitter.h"
#include "LevenbergMarquardtMinimizer.h"
#include "CylinderPrimitive.h"
/********************************************
Methods of class CylinderPrimitive::DataItem:
********************************************/
CylinderPrimitive::DataItem::DataItem(void)
:displayListId(glGenLists(2))
{
}
CylinderPrimitive::DataItem::~DataItem(void)
{
glDeleteLists(displayListId,2);
}
/**********************************
Methods of class CylinderPrimitive:
**********************************/
CylinderPrimitive::CylinderPrimitive(const LidarOctree* octree,const Primitive::Vector& translation,Cluster::MulticastPipe* pipe)
{
/* Extract all selected points from the octree: */
LidarSelectionExtractor<CylinderFitter::Point> lse;
octree->processSelectedPoints(lse);
if(lse.getPoints().size()>=6)
{
/* Try to fit a cylinder starting with all the primary axes: */
Scalar minF=Math::Constants<Scalar>::max;
for(int initialAxis=0;initialAxis<3;++initialAxis)
{
/* Create a cylinder fitter: */
CylinderFitter cf(lse.getPoints(),initialAxis);
/* Minimize the target function: */
Scalar f=LevenbergMarquardtMinimizer<CylinderFitter>::minimize(cf);
if(minF>f)
{
/* Store the target function: */
minF=f;
/* Extract the cylinder parameters: */
center=cf.getCenter();
axis=cf.getAxis();
axis.normalize();
radius=cf.getRadius();
}
}
/* Store the number of points and the RMS residual: */
numPoints=lse.getPoints().size();
rms=Math::sqrt(minF*Scalar(2)/Scalar(numPoints));
/* Calculate the point set's coverage along the cylinder axis: */
Scalar min,max;
std::vector<CylinderFitter::Point>::const_iterator pIt=lse.getPoints().begin();
min=max=(*pIt-center)*axis;
for(++pIt;pIt!=lse.getPoints().end();++pIt)
{
Scalar d=(*pIt-center)*axis;
if(min>d)
min=d;
else if(max<d)
max=d;
}
/* Set the cylinder's height and adjust the center point: */
length=(max-min)*Scalar(1.1);
center+=axis*Math::mid(min,max);
/* Print the cylinder's equation: */
std::cout<<"Cylinder fitting "<<numPoints<<" points"<<std::endl;
Point tCenter=center;
tCenter+=translation;
std::cout<<"Center point: ("<<tCenter[0]<<", "<<tCenter[1]<<", "<<tCenter[2]<<")"<<std::endl;
std::cout<<"Axis direction: ("<<axis[0]<<", "<<axis[1]<<", "<<axis[2]<<")"<<std::endl;
std::cout<<"Radius: "<<radius<<", height: "<<length<<std::endl;
std::cout<<"RMS approximation residual: "<<rms<<std::endl;
/* Compute an appropriate number of grid lines in x and y: */
double aspect=(Scalar(2)*Math::Constants<Scalar>::pi*radius)/length;
if(aspect>=1.0)
{
numX=10;
numY=int(Math::floor(10.0/aspect+0.5));
}
else
{
numY=10;
numX=int(Math::floor(10.0*aspect+0.5));
}
if(pipe!=0)
{
/* Send the extracted primitive over the pipe: */
pipe->write<int>(1);
pipe->write<unsigned int>((unsigned int)(numPoints));
pipe->write<Scalar>(rms);
pipe->write<Scalar>(center.getComponents(),3);
pipe->write<Scalar>(axis.getComponents(),3);
pipe->write<Scalar>(radius);
pipe->write<Scalar>(length);
pipe->write<int>(numX);
pipe->write<int>(numY);
pipe->flush();
}
}
else
{
if(pipe!=0)
{
pipe->write<int>(0);
pipe->flush();
}
Misc::throwStdErr("CylinderPrimitive::CylinderPrimitive: Not enough selected points");
}
}
CylinderPrimitive::CylinderPrimitive(Cluster::MulticastPipe* pipe)
{
/* Read the status flag from the pipe: */
if(!pipe->read<int>())
Misc::throwStdErr("CylinderPrimitive::CylinderPrimitive: Not enough selected points");
/* Read the number of points and the RMS residual: */
numPoints=pipe->read<unsigned int>();
rms=pipe->read<Scalar>();
/* Read the cylinder parameters: */
pipe->read<Scalar>(center.getComponents(),3);
pipe->read<Scalar>(axis.getComponents(),3);
radius=pipe->read<Scalar>();
length=pipe->read<Scalar>();
numX=pipe->read<int>();
numY=pipe->read<int>();
}
CylinderPrimitive::CylinderPrimitive(IO::File& file,const Primitive::Vector& translation)
{
/* Read the number of points and the RMS residual: */
numPoints=file.read<unsigned int>();
rms=file.read<Scalar>();
/* Read the cylinder parameters: */
file.read<Scalar>(center.getComponents(),3);
center+=translation;
file.read<Scalar>(axis.getComponents(),3);
radius=file.read<Scalar>();
length=file.read<Scalar>();
numX=file.read<int>();
numY=file.read<int>();
}
Primitive::Scalar CylinderPrimitive::pick(const Primitive::Point& pickPoint,Primitive::Scalar maxPickDistance) const
{
Scalar dist2=Scalar(0);
/* Project the pick point onto the cylinder's axis: */
Scalar axisParam=Math::abs((pickPoint-center)*axis)-Math::div2(length);
/* Reject if the axis parameter is out of bounds: */
if(axisParam>maxPickDistance)
return axisParam;
if(axisParam>Scalar(0))
dist2+=Math::sqr(axisParam);
/* Calculate the pick point's distance from the cylinder's axis: */
Scalar axisDist=Geometry::mag(Geometry::cross(axis,pickPoint-center));
dist2+=Math::sqr(axisDist-radius);
/* Return the pick point's distance from the cylinder: */
return Math::sqrt(dist2);
}
void CylinderPrimitive::initContext(GLContextData& contextData) const
{
/* Create a data item and store it in the context: */
DataItem* dataItem=new DataItem;
contextData.addDataItem(this,dataItem);
/* Create a coordinate system for the cylinder: */
Vector cx=Geometry::normal(axis);
cx.normalize();
Vector cy=Geometry::cross(axis,cx);
cy.normalize();
Vector cz=axis*(length/Scalar(2));
/* Create the cylinder rendering display lists: */
glNewList(dataItem->displayListId,GL_COMPILE);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_CULL_FACE);
glBegin(GL_QUAD_STRIP);
glNormal(1.0,0.0,0.0);
glVertex(center+cx*radius+cz);
glVertex(center+cx*radius-cz);
for(int x=1;x<72;++x)
{
Scalar angle=Math::rad(Scalar(x)*Scalar(360/72));
Vector d=cx*Math::cos(angle)+cy*Math::sin(angle);
glNormal(d);
d*=radius;
glVertex(center+d+cz);
glVertex(center+d-cz);
}
glNormal(1.0,0.0,0.0);
glVertex(center+cx*radius+cz);
glVertex(center+cx*radius-cz);
glEnd();
glEndList();
glNewList(dataItem->displayListId+1,GL_COMPILE);
glBlendFunc(GL_ONE,GL_ONE);
glLineWidth(1.0f);
glBegin(GL_LINES);
for(int x=0;x<numX;++x)
{
Scalar angle=Math::rad(Scalar(x)*Scalar(360)/Scalar(numX));
Vector d=cx*Math::cos(angle)+cy*Math::sin(angle);
d*=radius;
glVertex(center+d+cz);
glVertex(center+d-cz);
}
glEnd();
for(int y=0;y<=numY;++y)
{
Point center2=center+axis*((Scalar(y)/Scalar(numY)-Scalar(0.5))*length);
glBegin(GL_LINE_LOOP);
for(int x=0;x<72;++x)
{
Scalar angle=Math::rad(Scalar(x)*Scalar(360/72));
Vector d=cx*Math::cos(angle)+cy*Math::sin(angle);
d*=radius;
glVertex(center2+d);
}
glEnd();
}
glEndList();
}
void CylinderPrimitive::glRenderAction(GLContextData& contextData) const
{
/* Retrieve the data item: */
DataItem* dataItem=contextData.retrieveDataItem<DataItem>(this);
glPushAttrib(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_ENABLE_BIT|GL_LINE_BIT|GL_POLYGON_BIT);
glDisable(GL_LIGHTING);
/* Draw the cylinder's central axis: */
glLineWidth(3.0f);
glColor(surfaceColor);
glBegin(GL_LINES);
Vector z=axis*Math::div2(length);
glVertex(center-z);
glVertex(center+z);
glEnd();
glEnable(GL_BLEND);
glDepthMask(GL_FALSE);
/* Draw the surface: */
glColor(surfaceColor);
glCallList(dataItem->displayListId);
/* Draw the grid: */
glColor(gridColor);
glCallList(dataItem->displayListId+1);
glPopAttrib();
}
void CylinderPrimitive::write(IO::File& file,const Primitive::Vector& translation) const
{
/* Write the number of points and the RMS residual: */
file.write<unsigned int>((unsigned int)(numPoints));
file.write<Scalar>(rms);
/* Write the cylinder parameters: */
file.write<Scalar>((center+translation).getComponents(),3);
file.write<Scalar>(axis.getComponents(),3);
file.write<Scalar>(radius);
file.write<Scalar>(length);
file.write<int>(numX);
file.write<int>(numY);
}