forked from KeckCAVES/LidarViewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PointBasedLightingShader.cpp
463 lines (408 loc) · 14.1 KB
/
PointBasedLightingShader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/***********************************************************************
PointBasedLightingShader - Class to maintain a GLSL point-based lighting
shader that tracks the current OpenGL lighting state.
Copyright (c) 2008-2013 Oliver Kreylos
This file is part of the LiDAR processing and analysis package.
The LiDAR processing and analysis package is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
The LiDAR processing and analysis package is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the LiDAR processing and analysis package; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA
***********************************************************************/
#include "PointBasedLightingShader.h"
#include <string>
#include <iostream>
#include <Misc/PrintInteger.h>
#include <Misc/ThrowStdErr.h>
#include <GL/gl.h>
#include <GL/GLLightTracker.h>
#include <GL/GLClipPlaneTracker.h>
#include <GL/GLContextData.h>
#include <GL/Extensions/GLARBShaderObjects.h>
#include <GL/Extensions/GLARBVertexShader.h>
#include <GL/Extensions/GLARBGeometryShader4.h>
#include <GL/Extensions/GLARBFragmentShader.h>
/*****************************************
Methods of class PointBasedLightingShader:
*****************************************/
void PointBasedLightingShader::compileShader(void)
{
const GLLightTracker& lt=*(contextData.getLightTracker());
const GLClipPlaneTracker& cpt=*(contextData.getClipPlaneTracker());
std::string vertexShaderDefines;
std::string vertexShaderFunctions;
std::string vertexShaderMain;
if(usePlaneDistance)
{
/* Create the plane distance mapping uniforms: */
vertexShaderMain+="\
uniform vec4 planeDistancePlane;\n\
uniform sampler1D planeDistanceMap;\n\
\n";
}
/* Create the main vertex shader starting boilerplate: */
vertexShaderMain+="\
void main()\n\
{\n\
/* Compute the vertex position in eye coordinates: */\n\
vec4 vertexEc=gl_ModelViewMatrix*gl_Vertex;\n\
\n\
/* Compute the normal vector in eye coordinates: */\n\
vec3 normalEc=normalize(gl_NormalMatrix*gl_Normal);\n\
\n\
/* Let the normal vector always point towards the eye: */\n\
normalEc=faceforward(normalEc,normalEc,vertexEc.xyz);\n\
\n";
/* Get the material components: */
if(usePlaneDistance)
{
#ifdef LIDARVIEWER_VISUALIZE_WATER
vertexShaderMain+="\
/* Calculate the distance from the water surface: */\n\
float planeDist=dot(planeDistancePlane,gl_Vertex);\n\
vec4 ambient,diffuse;\n\
if(planeDist<=0.5)\n\
{\n\
/* Get the material properties from the plane distance texture: */\n\
ambient=texture1D(planeDistanceMap,planeDist);\n\
diffuse=ambient;\n\
}\n\
else\n\
{\n";
if(usePointColors)
{
vertexShaderMain+="\
/* Get the material properties from the current color: */\n\
ambient=gl_Color;\n\
diffuse=gl_Color;\n";
}
else
{
vertexShaderMain+="\
/* Get the material properties from the material state: */\n\
ambient=gl_FrontMaterial.ambient;\n\
diffuse=gl_FrontMaterial.diffuse;\n";
}
vertexShaderMain+="\
}\n";
#else
vertexShaderMain+="\
/* Get the material properties from the plane distance texture: */\n\
float planeDist=dot(planeDistancePlane,gl_Vertex);\n\
vec4 ambient=texture1D(planeDistanceMap,planeDist);\n\
vec4 diffuse=ambient;\n";
#endif
}
else if(usePointColors)
{
vertexShaderMain+="\
/* Get the material properties from the current color: */\n\
vec4 ambient=gl_Color;\n\
vec4 diffuse=gl_Color;\n";
}
else
{
vertexShaderMain+="\
/* Get the material properties from the material state: */\n\
vec4 ambient=gl_FrontMaterial.ambient;\n\
vec4 diffuse=gl_FrontMaterial.diffuse;\n";
}
vertexShaderMain+="\
vec4 specular=gl_FrontMaterial.specular;\n\
float shininess=gl_FrontMaterial.shininess;\n\
\n";
/* Continue the main vertex shader: */
vertexShaderMain+="\
/* Calculate global ambient light term: */\n\
vec4 ambientDiffuseAccum=gl_LightModel.ambient*ambient;\n\
vec4 specularAccum=vec4(0.0,0.0,0.0,0.0);\n\
\n\
/* Accumulate all enabled light sources: */\n";
/* Create light application functions for all enabled light sources: */
for(int lightIndex=0;lightIndex<lt.getMaxNumLights();++lightIndex)
if(lt.getLightState(lightIndex).isEnabled())
{
/* Create the light accumulation function: */
vertexShaderFunctions+=lt.createAccumulateLightFunction(lightIndex);
/* Call the light application function from the shader's main function: */
vertexShaderMain+="\
accumulateLight";
char liBuffer[12];
vertexShaderMain.append(Misc::print(lightIndex,liBuffer+11));
vertexShaderMain+="(vertexEc,normalEc,ambient,diffuse,specular,shininess,ambientDiffuseAccum,specularAccum);\n";
}
/* Continue the main vertex shader: */
vertexShaderMain+="\
\n\
/* Compute final vertex color: */\n\
gl_FrontColor=ambientDiffuseAccum+specularAccum;\n\
\n";
/* Insert code to calculate the vertex' position relative to all user-specified clipping planes: */
vertexShaderMain+=cpt.createCalcClipDistances("vertexEc");
/* Finish the main vertex shader: */
if(useSplatting)
{
vertexShaderDefines+="\
varying vec3 normal;\n\
\n";
vertexShaderMain+="\
/* Pass normal vector to geometry shader: */\n\
normal=normalEc;\n\
\n\
/* Pass eye coordinate vertex position to geometry shader: */\n\
gl_Position=vertexEc;\n\
}\n";
}
else
{
vertexShaderMain+="\
/* Use standard vertex position: */\n\
gl_Position=ftransform();\n\
}\n";
}
/* Compile the vertex shader: */
std::string vertexShaderSource=vertexShaderDefines+vertexShaderFunctions+vertexShaderMain;
glCompileShaderFromString(vertexShader,vertexShaderSource.c_str());
if(useSplatting)
{
if(!geometryShaderAttached)
{
/* Attach the geometry shader to the program object: */
glAttachObjectARB(programObject,geometryShader);
geometryShaderAttached=true;
}
/* Compile the surfel generation geometry shader: */
const char* geometryShaderSource="\
#version 120\n\
#extension GL_ARB_geometry_shader4: enable\n\
\n\
uniform float surfelSize;\n\
\n\
varying in vec3 normal[];\n\
\n\
void main()\n\
{\n\
/* Calculate quad base vectors based on the eye-coordinate vertex position and normal: */\n\
vec3 x;\n\
if(abs(normal[0].x)<abs(normal[0].y)&&abs(normal[0].x)<abs(normal[0].z))\n\
x=normalize(vec3(0.0,normal[0].z,-normal[0].y));\n\
else if(abs(normal[0].y)<abs(normal[0].z))\n\
x=normalize(vec3(normal[0].z,0.0,-normal[0].x));\n\
else\n\
x=normalize(vec3(normal[0].y,-normal[0].x,0.0));\n\
x*=surfelSize*1.41421356;\n\
vec3 y=cross(normal[0],x);\n\
\n\
/* Emit the quad's four vertices: */\n\
gl_TexCoord[0].st=vec2(-1.0,-1.0);\n\
gl_FrontColor=gl_FrontColorIn[0];\n\
gl_Position=gl_ProjectionMatrix*(gl_PositionIn[0]+vec4(x,0.0));\n\
EmitVertex();\n\
\n\
gl_TexCoord[0].st=vec2(1.0,-1.0);\n\
gl_FrontColor=gl_FrontColorIn[0];\n\
gl_Position=gl_ProjectionMatrix*(gl_PositionIn[0]+vec4(y,0.0));\n\
EmitVertex();\n\
\n\
gl_TexCoord[0].st=vec2(-1.0,1.0);\n\
gl_FrontColor=gl_FrontColorIn[0];\n\
gl_Position=gl_ProjectionMatrix*(gl_PositionIn[0]-vec4(y,0.0));\n\
EmitVertex();\n\
\n\
gl_TexCoord[0].st=vec2(1.0,1.0);\n\
gl_FrontColor=gl_FrontColorIn[0];\n\
gl_Position=gl_ProjectionMatrix*(gl_PositionIn[0]-vec4(x,0.0));\n\
EmitVertex();\n\
}\n";
glCompileShaderFromString(geometryShader,geometryShaderSource);
/* Set the geometry shader's parameters: */
glProgramParameteriARB(programObject,GL_GEOMETRY_VERTICES_OUT_ARB,4);
glProgramParameteriARB(programObject,GL_GEOMETRY_INPUT_TYPE_ARB,GL_POINTS);
glProgramParameteriARB(programObject,GL_GEOMETRY_OUTPUT_TYPE_ARB,GL_TRIANGLE_STRIP);
/* Compile the surfel fragment shader: */
const char* fragmentShaderSource=
"\
void main()\n\
{\n\
/* Discard fragments outside a unit-radius circle as defined by texture coordinates: */\n\
if(dot(gl_TexCoord[0].xy,gl_TexCoord[0].xy)>1.0)\n\
discard;\n\
\n\
gl_FragColor=gl_Color;\n\
}\n";
glCompileShaderFromString(fragmentShader,fragmentShaderSource);
}
else
{
if(geometryShaderAttached)
{
/* Detach the geometry shader from the program object: */
glDetachObjectARB(programObject,geometryShader);
geometryShaderAttached=false;
}
/* Compile the standard fragment shader: */
const char* fragmentShaderSource=
"\
void main()\n\
{\n\
gl_FragColor=gl_Color;\n\
}\n";
glCompileShaderFromString(fragmentShader,fragmentShaderSource);
}
/* Link the program object: */
glLinkProgramARB(programObject);
/* Check if the program linked successfully: */
GLint linkStatus;
glGetObjectParameterivARB(programObject,GL_OBJECT_LINK_STATUS_ARB,&linkStatus);
if(!linkStatus)
{
/* Get some more detailed information: */
GLcharARB linkLogBuffer[2048];
GLsizei linkLogSize;
glGetInfoLogARB(programObject,sizeof(linkLogBuffer),&linkLogSize,linkLogBuffer);
/* Signal an error: */
Misc::throwStdErr("Error \"%s\" while linking shader program",linkLogBuffer);
}
if(useSplatting)
{
/* Get the locations of the uniform variables: */
surfelSizeLocation=glGetUniformLocationARB(programObject,"surfelSize");
}
if(usePlaneDistance)
{
/* Get the locations of the uniform variables: */
planeDistancePlaneLocation=glGetUniformLocationARB(programObject,"planeDistancePlane");
planeDistanceMapLocation=glGetUniformLocationARB(programObject,"planeDistanceMap");
}
}
PointBasedLightingShader::PointBasedLightingShader(GLContextData& sContextData)
:contextData(sContextData),
haveGeometryShaders(false),
lightStateVersion(0),clipPlaneStateVersion(0),shaderSettingsVersion(0),
settingsVersion(1),
usePlaneDistance(false),
usePointColors(false),
useSplatting(false),
vertexShader(0),geometryShader(0),fragmentShader(0),programObject(0),geometryShaderAttached(false)
{
/* Check for the required OpenGL extensions: */
if(!GLARBShaderObjects::isSupported())
Misc::throwStdErr("GLShader::GLShader: GL_ARB_shader_objects not supported");
if(!GLARBVertexShader::isSupported())
Misc::throwStdErr("GLShader::GLShader: GL_ARB_vertex_shader not supported");
if(!GLARBFragmentShader::isSupported())
Misc::throwStdErr("GLShader::GLShader: GL_ARB_fragment_shader not supported");
/* Initialize the required extensions: */
GLARBShaderObjects::initExtension();
GLARBVertexShader::initExtension();
GLARBFragmentShader::initExtension();
/* Create the vertex and fragment shaders: */
vertexShader=glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
fragmentShader=glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
/* Create the program object: */
programObject=glCreateProgramObjectARB();
glAttachObjectARB(programObject,vertexShader);
glAttachObjectARB(programObject,fragmentShader);
/* Check for the optional geometry shader extension: */
if(GLARBGeometryShader4::isSupported())
{
/* Initialize the extension: */
haveGeometryShaders=true;
GLARBGeometryShader4::initExtension();
/* Create the geometry shader: */
geometryShader=glCreateShaderObjectARB(GL_GEOMETRY_SHADER_ARB);
}
}
PointBasedLightingShader::~PointBasedLightingShader(void)
{
glDeleteObjectARB(programObject);
glDeleteObjectARB(vertexShader);
if(haveGeometryShaders)
glDeleteObjectARB(geometryShader);
glDeleteObjectARB(fragmentShader);
}
void PointBasedLightingShader::setUsePlaneDistance(bool newUsePlaneDistance)
{
if(usePlaneDistance!=newUsePlaneDistance)
{
/* Update the state: */
usePlaneDistance=newUsePlaneDistance;
++settingsVersion;
}
}
void PointBasedLightingShader::setUsePointColors(bool newUsePointColors)
{
if(usePointColors!=newUsePointColors)
{
usePointColors=newUsePointColors;
++settingsVersion;
}
}
void PointBasedLightingShader::setUseSplatting(bool newUseSplatting)
{
/* Disable splatting if geometry shaders are not supported: */
newUseSplatting=newUseSplatting&&haveGeometryShaders;
if(useSplatting!=newUseSplatting)
{
useSplatting=newUseSplatting;
++settingsVersion;
}
}
void PointBasedLightingShader::enable(void)
{
try
{
/* Re-compile the shader if it is out of line with current state: */
const GLLightTracker& lt=*(contextData.getLightTracker());
const GLClipPlaneTracker& cpt=*(contextData.getClipPlaneTracker());
if(lightStateVersion!=lt.getVersion()||clipPlaneStateVersion!=cpt.getVersion()||shaderSettingsVersion!=settingsVersion)
{
/* Rebuild the shader: */
compileShader();
/* Mark the shader as up-to-date: */
lightStateVersion=lt.getVersion();
clipPlaneStateVersion=cpt.getVersion();
shaderSettingsVersion=settingsVersion;
}
/* Enable the shader: */
glUseProgramObjectARB(programObject);
}
catch(std::runtime_error err)
{
std::cerr<<"Disabling lighting shader due to exception "<<err.what()<<std::endl;
}
}
void PointBasedLightingShader::setSurfelSize(float surfelSize)
{
if(useSplatting)
{
/* Set the surfel size uniform variable: */
glUniformARB(surfelSizeLocation,surfelSize);
}
}
void PointBasedLightingShader::setDistancePlane(int textureUnit,const PointBasedLightingShader::Plane& distancePlane,double distancePlaneScale) const
{
if(usePlaneDistance)
{
/* Set the plane equation variable: */
GLfloat planeEq[4];
for(int i=0;i<3;++i)
planeEq[i]=GLfloat(distancePlane.getNormal()[i]/distancePlaneScale);
planeEq[3]=GLfloat(0.5-distancePlane.getOffset()/distancePlaneScale);
glUniformARB<4>(planeDistancePlaneLocation,1,planeEq);
/* Set the texture unit variable: */
glUniformARB(planeDistanceMapLocation,textureUnit);
}
}
void PointBasedLightingShader::disable(void)
{
/* Disable the shader: */
glUseProgramObjectARB(0);
}