-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinit.lua
89 lines (73 loc) · 2.26 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
-- dependencies:
require 'torch'
require 'optim'
-- function that computes a Mahalanobis distance matrix:
local function mahalanobis_distance(X, metric)
-- default to squared Euclidean metric:
local N = X:size(1)
local M = metric or torch.eye(X:size(2), X:size(2))
-- compute Mahalanobis distance:
local XM = torch.mm(X, M)
local buff = torch.DoubleTensor(X:size())
torch.cmul(buff, XM, X)
local sum_X = buff:sum(2)
local D = torch.mm(XM, X:t())
D:mul(-2)
D:add(sum_X:expand(N, N)):add(sum_X:expand(N, N):t())
return D
end
-- function that performs nearest neighbor classification:
local function nn_classification(train_Z, train_Y, test_Z)
-- compute squared Euclidean distance matrix between train and test data:
local N = train_Z:size(1)
local M = test_Z:size(1)
local buff1 = torch.DoubleTensor(train_Z:size())
local buff2 = torch.DoubleTensor( test_Z:size())
torch.cmul(buff1, train_Z, train_Z)
torch.cmul(buff2, test_Z, test_Z)
local sum_Z1 = buff1:sum(2)
local sum_Z2 = buff2:sum(2)
local sum_Z1_expand = sum_Z1:t():expand(M, N)
local sum_Z2_expand = sum_Z2:expand(M, N)
local D = torch.mm(test_Z, train_Z:t())
D:mul(-2)
D:add(sum_Z1_expand):add(sum_Z2_expand)
-- perform 1-nearest neighbor classification:
local test_Y = torch.DoubleTensor(M)
for m = 1,M do
local _,ind = torch.min(D[m], 1)
test_Y[m] = train_Y[ind[1]]
end
-- return classification
return test_Y
end
-- function that computes training nearest neighbor error:
local function train_nn_error(X, Y)
-- compute projected data:
local N = X:size(1)
-- compute pairwise square Euclidean distance matrix:
local D = mahalanobis_distance(X)
for n = 1,N do
D[n][n] = math.huge
end
-- compute nearest neighbor error:
local err = 0
local _,ind = torch.min(D, 2)
for n = 1,N do
if Y[n] ~= Y[ind[n][1]] then
err = err + 1
end
end
err = err / N
-- return result:
return err
end
-- return package:
return {
nca = require 'metriclearning.nca',
lmnn = require 'metriclearning.lmnn',
itml = require 'metriclearning.itml', --drlim = require 'metriclearning.drlim',
mahalanobis_distance = mahalanobis_distance,
nn_classification = nn_classification,
train_nn_error = train_nn_error
}