-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_cri.py
151 lines (126 loc) · 6.72 KB
/
train_cri.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os.path
import torch.optim
from torch.utils.data import DataLoader
from dataset import *
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('data', metavar='DIR',
help='path to datasets')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
help='model architecture')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0, type=float,
metavar='W', help='weight decay (default: 0.0)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--new-size', type=int, default=512)
parser.add_argument('--crop-size', type=int, default=448)
parser.add_argument('--datadir', type=str, default='.')
parser.add_argument('--logdir', type=str, default='.')
parser.add_argument('--warmup-epochs', type=int, default=0)
parser.add_argument('--lr-step', type=int, default=None)
parser.add_argument('--milestones', nargs='+', type=int, default=None)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--loss', type=str, default=None)
parser.add_argument('--lr-policy', type=str)
parser.add_argument('--num-hiddens', type=int)
parser.add_argument('--seed', type=int, required=True)
parser.add_argument('--S-seed', type=int, required=True)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--dataset_on_gpu', action='store_true')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--cri_arch', type=str)
parser.add_argument('--num-samples', type=int, required=True)
parser.add_argument('--num_training_samples', type=int, required=True)
parser.add_argument('--aug_train', action='store_true')
parser.add_argument('--method', type=str, choices=['rib', 'vanilla', 'l2', 'dropout', 'pib', 'vib'])
parser.add_argument('--ghost_dataset_name', type=str, default=None)
def main():
args = parser.parse_args()
if "CUDA_VISIBLE_DEVICES" not in os.environ:
free_gpus = get_free_gpu(num=1)
os.environ["CUDA_VISIBLE_DEVICES"] = free_gpus
os.environ["OMP_NUM_THREADS"] = str(2)
set_random_seed(args.seed)
train_dataset, ghost_dataset, _, val_dataset, test_dataset, _ = \
get_all_datasets(args.data,
num_samples=args.num_training_samples,
seed=args.seed,
S_seed=args.S_seed,
gpu=args.dataset_on_gpu,
root=args.datadir,
ghost_dataset_name=args.ghost_dataset_name)
model = get_trained_network(args, args.arch, args.logdir)
with open(os.path.join(args.logdir, 'results.json'), 'r') as f:
result_dict = json.load(f)
writer = None # SummaryWriter(args.logdir)
print(f"=> critic training")
model_critic = main_critic(args, writer, model, train_dataset, ghost_dataset)
print(f"=> critic evaluating")
_, _, sup_dataset, _, _, mask = \
get_all_datasets(args.data,
num_samples=args.num_samples,
seed=args.seed,
S_seed=args.S_seed,
gpu=args.dataset_on_gpu,
root=args.datadir,
ghost_dataset_name=args.ghost_dataset_name)
assert 2 * len(mask) == len(sup_dataset)
sup_loader = DataLoader(sup_dataset,
batch_size=args.batch_size * 2, shuffle=False,
pin_memory=not args.dataset_on_gpu)
recog_est = estimate_recog(sup_loader, mask, model, model_critic, args)
save_prediction({'pred': get_prediction(sup_loader, model), 'mask': mask, 'recog': recog_est}, 'preds.pkl',
args.logdir)
result_filename = 'results_recog.json'
save_result_dict(result_dict, args.logdir, filename=result_filename)
print("=> finished")
def main_critic(args, writer, model, train_dataset, ghost_dataset):
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True,
pin_memory=not args.dataset_on_gpu)
ghost_loader = DataLoader(ghost_dataset,
batch_size=args.batch_size, shuffle=True,
pin_memory=not args.dataset_on_gpu)
print("=> creating model '{}'".format(args.cri_arch))
model_cri = get_network(args.cri_arch,
in_features=model.feat_size * 2,
num_hiddens=args.num_hiddens)
model_cri.cuda()
optimizer_cri = torch.optim.SGD(model_cri.parameters(), args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = get_scheduler(args, optimizer_cri, T_max=len(ghost_loader) * args.epochs)
for epoch in range(args.start_epoch, args.epochs):
train_critic(train_loader, ghost_loader, model, model_cri, optimizer_cri, scheduler, args, epoch, writer=writer)
return model_cri
def get_trained_network(args, arch, ckpt_dir, epoch=None):
num_classes = get_dataset_class_number(args.data)
print("=> creating model '{}'".format(arch))
model = get_network(arch,
num_classes=num_classes, dropout_rate=args.dropout,
input_channels=1 if args.data in ('mnist', 'fashion') else 3,
reparametrize=args.method)
print("=> loading checkpoint from '{}'".format(args.logdir))
filename = f"checkpoint{'' if epoch is None else '_' + str(epoch)}.pth"
state_dict = torch.load(os.path.join(ckpt_dir, filename), map_location='cuda:0')
model.load_state_dict(state_dict['state_dict'])
model.cuda()
return model
if __name__ == '__main__':
main()