-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_output.py
212 lines (191 loc) · 9.6 KB
/
save_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pandas as pd
import numpy as np
import pickle
import scipy
# --------------------------- Save data and predictions --------------------------- #
class SaveOutput:
"""
A calss object to save model outputs
Parameters
----------
train_id : pd.DataFrame
Training set positional IDs
eval_id : pd.DataFrame
Evaluation set positional IDs
test_id : pd.DataFrame
Test set positional IDs
out_features : str
Name of the FHG coeficent
custom_name: str
A custom name for the running instance
x_train : pd.DataFrame
Predictor variables for training
x_eval: pd.DataFrame
Predictor variables for evaluation
test_x: pd.DataFrame
Predictor variables for testing
y_train: np.array:
Target variables for training
y_eval: np.array
Target variables for evaluation
test_y: np.array
Target variables for testing
best_model: str
Name of the best model
loaded_model: any
Model structure and weights
x_transform: bool
Apply transformation to predictors
y_transform: bool
Apply transformation to target
SI: bool
Consider sientific system when plotting
"""
def __init__(self, train_id: pd.DataFrame, eval_id: pd.DataFrame,
test_id: pd.DataFrame, out_feature: str, custom_name: str,
x_train: pd.DataFrame, x_eval: pd.DataFrame, test_x: pd.DataFrame,
train_columns: list, m_x_train: pd.DataFrame, m_x_eval: pd.DataFrame, m_x_test: pd.DataFrame,
y_train: np.array, y_eval: np.array, test_y: np.array,
target_data_path: str, best_model: str, loaded_model: any,
x_transform: bool, y_transform: bool, t_type: str, SI: bool) -> None:
self.train_id = train_id
self.eval_id = eval_id
self.test_id = test_id
self.out_feature = out_feature
self.custom_name = custom_name
self.x_train = x_train
self.x_eval = x_eval
self.test_x = test_x
self.train_columns = train_columns
self.m_x_train = m_x_train
self.m_x_eval = m_x_eval
self.m_x_test = m_x_test
self.y_train = y_train
self.y_eval = y_eval
self.test_y = test_y
self.target_data_path = target_data_path
self.best_model = best_model
self.loaded_model = loaded_model
self.y_trans = y_transform
self.x_trans = x_transform
self.t_type = t_type
self.SI = SI
self.predictions_train = 0
self.predictions_valid = 0
self.predictions_test = 0
self.merged_data = pd.DataFrame([])
def processData(self) -> None:
"""
A preprocessing step
"""
# data transformation ----------------------------------------
# min_length = min(len(self.loaded_model.feature_names_in_), len(self.train_columns))
# # Print values side by side
# for i in range(min_length):
# print(f'{self.loaded_model.feature_names_in_[i]} {self.train_columns[i]}')
self.predictions_train = self.loaded_model.predict(self.m_x_train)
self.predictions_valid = self.loaded_model.predict(self.m_x_eval)
self.predictions_test = self.loaded_model.predict(self.m_x_test)
pc_columns = [col for col in self.x_train.columns if '_pc' in col]
pc_columns = pc_columns + ["R2", "siteID"]
self.x_train = self.x_train.drop(columns=pc_columns, axis=1)
self.x_eval = self.x_eval.drop(columns=pc_columns, axis=1)
self.test_x = self.test_x.drop(columns=pc_columns, axis=1)
# self.predictions_train_orig = self.predictions_train.copy()
# self.predictions_valid_orig = self.predictions_valid.copy()
# self.predictions_test_orig = self.predictions_test.copy()
# self.y_train_orig = self.y_train.copy()
# self.y_eval_orig = self.y_eval.copy()
# self.test_y_orig = self.test_y.copy()
if self.y_trans:
if self.t_type != 'log':
t_y = pickle.load(open(self.custom_name+'/model/'+'train_y_'+self.out_feature+'_tansformation.pkl', "rb"))
self.predictions_train = t_y.inverse_transform(self.predictions_train.reshape(-1,1)).ravel()
self.predictions_valid = t_y.inverse_transform(self.predictions_valid.reshape(-1,1)).ravel()
self.predictions_test = t_y.inverse_transform(self.predictions_test.reshape(-1,1)).ravel()
# train_temp = self.y_train.copy()
# eval_temp = self.y_eval.copy()
# test_temp = self.test_y.copy()
self.y_train = t_y.inverse_transform(self.y_train.reshape(-1,1)).ravel()
self.y_eval = t_y.inverse_transform(self.y_eval.reshape(-1,1)).ravel()
self.test_y = t_y.inverse_transform(self.test_y.reshape(-1,1)).ravel()
else:
self.y_train = np.exp(self.y_train)
self.y_eval = np.exp(self.y_eval)
self.test_y = np.exp(self.test_y)
# if self.x_trans:
# if self.t_type != 'log':
# t_x = pickle.load(open(self.custom_name+'/model/'+'train_x_'+self.out_feature+'_tansformation.pkl', "rb"))
# col_names = self.x_train.columns
# self.x_train = t_x.inverse_transform(self.x_train)
# self.x_train = pd.DataFrame(data=self.x_train,
# columns=col_names).reset_index(drop=True)
# self.x_eval = t_x.inverse_transform(self.x_eval)
# self.x_eval = pd.DataFrame(data=self.x_eval,
# columns=col_names).reset_index(drop=True)
# self.test_x = t_x.inverse_transform(self.test_x)
# self.test_x = pd.DataFrame(data=self.test_x,
# columns=col_names).reset_index(drop=True)
# else:
# self.x_train = np.exp(self.x_train)
# self.x_eval = np.exp(self.x_eval)
# self.test_x = np.exp(self.test_x)
# ___________________________________________________
# Build complete dataframe
train_attr = self.x_train.copy()
eval_attr = self.x_eval.copy()
test_attr = self.test_x.copy()
train_attr['split'] = 'train'
eval_attr['split'] = 'eval'
test_attr['split'] = 'test'
train_attr['predicted'] = self.predictions_train
eval_attr['predicted'] = self.predictions_valid
test_attr['predicted'] = self.predictions_test
train_attr['target'] = self.y_train
eval_attr['target'] = self.y_eval
test_attr['target'] = self.test_y
# Add additional attributes
train_attr = pd.concat([train_attr, self.train_id[['siteID']]], axis=1)
eval_attr = pd.concat([eval_attr, self.eval_id[['siteID']]], axis=1)
test_attr = pd.concat([test_attr, self.test_id[['siteID']]], axis=1)
self.merged_data = pd.concat([train_attr, eval_attr, test_attr], axis=0)
data_attr = pd.read_parquet(self.target_data_path, engine='pyarrow')
data_attr.astype({'siteID': 'string'})
#list_attr = list(set(data_attr.columns.to_list()) - set(['lat', 'long']))
#data_attr = data_attr[list_attr]
if self.out_feature.startswith("Y"):
data_attr = data_attr[['siteID','Count','coe','exp','R2','Y_bf','Y_in']]
else:
data_attr = data_attr[['siteID','Count','coe','exp','R2','TW_bf','TW_in']]
self.merged_data = self.merged_data.merge(data_attr, on='siteID', how='inner')
if self.SI:
self.merged_data['predicted'] = self.merged_data['predicted'] * 0.3048
self.merged_data['target'] = self.merged_data['target'] * 0.3048
# Spitout some metrics
# ___________________________________________________
def calRsquared(y_true, y_pred):
"""
R2 based on linear regression
rgs:
y_true ([pd.series]): Observations
y_pred ([pd.series]): Predictions
Returns:
[float]: normalized root mean square error
"""
y_true = np.array(y_true)
y_pred = np.array(y_pred)
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(y_true, y_pred)
cof2 = r_value**2
return cof2
def rSquared2(df):
return calRsquared(df['target'], df['predicted'])
print("\n __________________ Stats for "+str(self.custom_name)+" "+self.best_model+" "+self.out_feature+" _________________________ \n")
print("Training Accuracy: %.2f%%" % (rSquared2(train_attr)*100))
print("Validation Accuracy: %.2f%%" % (rSquared2(eval_attr)*100))
print("Testing Accuracy: %.2f%%" % (rSquared2(test_attr)*100))
# ___________________________________________________
# Save dataframe
self.merged_data = self.merged_data.loc[:, ~self.merged_data.columns.duplicated()]
self.merged_data.to_parquet(self.custom_name+'/metrics/'+str(self.custom_name)+'_'+self.best_model+'_'+self.out_feature+'.parquet')
print("\n __________________ Saved _________________________ \n")
return