-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathit.R
330 lines (277 loc) · 12.8 KB
/
it.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
## IT data
library(PerformanceAnalytics)
library(astsa)
library(itsmr)
library(lubridate)
library(zoo)
library(randtests)
library(forecast)
library(urca)
library(aTSA)
library(ggplot2)
library(tsoutliers)
library(gridExtra)
library(rugarch)
library(tseries)
library(quantmod)
library(dplyr)
library(reshape2)
#----------loading data IT
#####
nifty_it <- read.csv('/home/mahendra/Downloads/sem_3/TSA/project/data/it_data.csv')
nifty_it <- nifty_it[852:1233,c(3,7)]
#nifty_it <- nifty_it[1222:1233,c(3,7)]
#View(nifty_it)
dim(nifty_it) # 382 2
nifty_it[,1] <- dmy(nifty_it[,1])
#plot(nifty_it$Close, ylab="Stock Prices",main="Figure : Closing prices of the stocks",type = 'l')
tso_it <- zoo(nifty_it$Close, nifty_it$Date)
#plot(tso_it,type = 'l')
######################## EDA ############################
it <- data.frame(xts(nifty_it$Close, order.by=as.POSIXct(nifty_it$Date)))
names(it) <- "it closed"
chartSeries(it, type = "line", show.grid = TRUE,name = "CLOSING Price of NIFTY-IT")
########acf and pacf of the original data just to see
#m<- ggAcf(nifty_it$Close, col='red',main='Acf of NIFTY-IT original stock price')
#n<- ggPacf(nifty_it$Close,col='steelblue',main='PAcf of NIFTY-IT original stock price')
#grid.arrange(m,n, ncol = 2, nrow = 1)
########
####################
### log Return #####
### sqr return #####
####################
Return_it=CalculateReturns(tso_it, method = 'log')
return_it <- data.frame(xts(Return_it, order.by=as.POSIXct(nifty_it$Date)))
chartSeries(return_it, type = "line", show.grid = TRUE,name = "Log-returns of NIFTY-IT")
rtrn_it=Return_it[-c(1),] # remove the first row as it does not contain a value
chart_Series(rtrn_it)
# histogram of the returns
chart.Histogram(return_it,methods = c("add.density","add.normal"),
colorset = c("blue","red","black"),
main = "histogram of the log-returns of Nifty-IT data")
legend("topright",legend = c("return","kernel","normal dist"),fill = c("blue","red","black"))
#plot.ts(Return_it,type="o",xlab="Date",ylab="log return ", main="Log return of IT")
#sum(na.omit(Return_it))/length(na.omit(Return_it)) # mean= 0.003004869
sqr_Return_it = Return_it^2
sqr_return_it <- data.frame(xts(sqr_Return_it, order.by=as.POSIXct(nifty_it$Date)))
chartSeries(sqr_return_it, type = "line", show.grid = TRUE,name = "square of Log-returns of NIFTY-IT")
#plot.ts(sqr_Return_it,type="o",xlab="Date",ylab="square log return ", main="Squared Log return of IT")
#####################################
#### Augmented Dickey Fuller Test ###
####### ADF of returns ############
#####################################
#summary(ur.df(logret,type='drift'))
summary(ur.df(na.omit(Return_it)))
#####################################
##### ACF of return #####
#### PACF of return #####
#####################################
a<- ggAcf(na.omit(as.vector(Return_it)), col='red',main='Acf of Log-Return of NIFTY-IT data')
p<- ggPacf(na.omit(as.vector(Return_it)),col='steelblue',main='PAcf of Log-Return of NIFTY-IT data')
grid.arrange(a,p, ncol = 2, nrow = 1)
############# Identifying the mean model by ARIMA #########################
arima_it <- auto.arima(na.omit(as.vector(Return_it)))
arima_it
checkresiduals(arima_it)
# adf test of the residual
summary(ur.df(resid(arima_it),type="none",lag=1))
#autoplot(arima_it)
# ********************************************************* NOW GARCH
#################################################################
#Absolute Return or Squared of Return are auto correlated.
#Absolute Return or Squared of Return acf an pacf
##################################################################
#a<- ggAcf(abs(na.omit(as.vector(Return_it))), col='red',main='Acf of Absolute Return_it of NIFTY')
#p<- ggPacf(abs(na.omit(as.vector(Return_it))),col='steelblue',main='PAcf of Absolute Return_it of NIFTY')
#grid.arrange(a,p, ncol = 2, nrow = 1)
c <- ggAcf(na.omit(as.vector(Return_it))^2, lag.max = 40, col='red', main='ACF of squared of log-Return Values of the IT data')
d<- ggPacf(na.omit(as.vector(Return_it))^2,lag.max = 40, col='steelblue',main= 'PACF of squared of log-Return Values of the IT data')
grid.arrange(c,d, ncol = 2, nrow = 1)
############################################
# Testing ARCH ##########################
############################################
library(FinTS)
ArchTest(Return_it,lags=1,demean = TRUE)
###############################
#### Volatility Clustering ####
###############################
#arima_res_it <- arima_it$residuals
#ggtsdisplay(arima_res_it,main="Residuals after fitting best-ARIMA model")
sq_residual_it <- arima_res_it^2
ggtsdisplay(sq_residual_it,main="Squared Residuals after fitting best-ARIMA model")
chart.RollingPerformance(na.omit(Return_it),width = 22,FUN = 'sd.annualized',scale=252, main = 'Rolling 1 month Volatility of the log-return of It data')
######Skewness Kurtois ##############
ggplot(aes(as.vector(na.omit(Return_it))), data=na.omit(Return_it)) +
geom_histogram(bins = 100,col='black',fill='red') +
ggtitle('Return_it of MSFt')
skewness=skewness((as.vector(na.omit(Return_it))))
kurtosis=kurtosis((as.vector(na.omit(Return_it))))
sprintf("skewness= %f kurtosis= %f",skewness,kurtosis)
############## QQ Plot ##############
ggplot(data=nifty_it, aes(sample = as.vector(Return_it))) +
stat_qq() +
stat_qq_line(col='red') + ggtitle('QQ plot of Nifty-IT Returns')
######################################
Box.test(na.omit(as.vector(Return_it)), lag = 1, type = "Ljung-Box", fitdf = 0)
######################################
##################################################################################
################################# GARCH Model ####################################
##################################################################################
NIFTY_IT_MODELS_p<-list()
NIFTY_IT_MODELS_q<-list()
NIFTY_IT_MODELS_P<-list()
NIFTY_IT_MODELS_Q<-list()
NIFTY_IT_MODELS_AIC<-list()
NIFTY_IT_MODELS_BIC<-list()
NIFTY_IT_MODELS_AICC<-list()
ind=0
for (p in seq(0,5)){
for (q in seq(0,5)){
for (P in seq(0,5)){
for (Q in seq(0,5)){
try({
spec <- ugarchspec(mean.model = list(armaOrder=c(p,q)),
variance.model = list(model = 'eGARCH',
garchOrder = c(P,Q)),distribution = 'std')
fit <- ugarchfit(spec = spec, data= na.omit(Return_it))
k=p+q+P+Q
n=382
AICind<-infocriteria(fit)[1]
BICind<-infocriteria(fit)[2] })
AICcind <- AICind + (2*k*(k+1)/(n-k-1))
ind=ind+1
NIFTY_IT_MODELS_p[[ind]]<-p
NIFTY_IT_MODELS_q[[ind]]<-q
NIFTY_IT_MODELS_P[[ind]]<-P
NIFTY_IT_MODELS_Q[[ind]]<-Q
try({
NIFTY_IT_MODELS_AIC[[ind]]<-AICind
NIFTY_IT_MODELS_BIC[[ind]]<-BICind
NIFTY_IT_MODELS_AICC[[ind]]<-AICcind
})
print(ind)
#it_aic[i,j] <- infocriteria(r)[1]
#it_bic <- infocriteria(r)[2]
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"pp"]<-p
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"qq"]<-q
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"PP"]<-P
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"QQ"]<-Q
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"AIC"]<-infocriteria(r)[1]
#NIFTY_IT_MODELS[nrow(NIFTY_IT_MODELS)+1,"BIC"]<-infocriteria(r)[2]"
#print(summary(k))
#print("--------------------------------")
#NIF_AIC[i,j]<- stats::AIC(k)
#plot.ts(k$fitted.values[-1,1]**2,main=paste("Estimated GARCH(",paste(i,j,sep=","),") variance for the 'Nifty' dataset"))
}
}
}
}
NIFTY_IT_MODELS<-data.frame(matrix(nrow=1296,ncol=7))#1296
columns<-c("pp","qq","PP","QQ","AIC","BIC","AICC")
colnames(NIFTY_IT_MODELS)<-columns
NIFTY_IT_MODELS$pp<-as.character(NIFTY_IT_MODELS_p)
NIFTY_IT_MODELS$qq<-as.character(NIFTY_IT_MODELS_q)
NIFTY_IT_MODELS$PP<-as.character(NIFTY_IT_MODELS_P)
NIFTY_IT_MODELS$QQ<-as.character(NIFTY_IT_MODELS_Q)
NIFTY_IT_MODELS$AIC<-as.character(NIFTY_IT_MODELS_AIC)
NIFTY_IT_MODELS$BIC<-as.character(NIFTY_IT_MODELS_BIC)
NIFTY_IT_MODELS$AICC<-as.character(NIFTY_IT_MODELS_AICC)
#View(NIFTY_IT_MODELS)
write.csv(NIFTY_IT_MODELS,file = "IT_score.csv",sep=",")
#************************************
dat<-read.csv('/home/mahendra/Downloads/sem_3/TSA/project/data/IT_score.csv')
df<-dat%>%select(X,AIC,AICC,BIC)%>%filter(AIC<0)%>%filter(BIC<0)%>%filter(AICC<0)
d <- melt(df, id.vars="X")
ggplot(data=d,
aes(x=X, y=value, colour=variable)) +
geom_line()+ labs(x="sl no of different combination of ARIMA and GARCH model", y="score",title = "AIC,BIC and AICc score of different model")
###*************** Best model specification and fitting
garch_it <- ugarchspec(mean.model = list(armaOrder=c(4,2)),
variance.model = list(model = 'eGARCH',
garchOrder = c(4,3)),distribution = 'std')
fit_garch_it <- ugarchfit(spec = garch_it, data= na.omit(as.vector(Return_it)))
#fit_garch_it <- ugarchfit(garch_it, data= na.omit(Return_it))
#fit_garch_it
#plot(fit_garch_it,which='all')
## forecasting
forecast_it<- ugarchforecast(fit_garch_it,n.ahead = 30)
#forecast_it
#forecast_it@forecast$seriesFor
par(mfrow=c(1,2))
plot(forecast_it,which=1)
plot(forecast_it,which=3)
########### going back to original data
nifty_It <- read.csv('/home/mahendra/Downloads/sem_3/TSA/project/data/It_data.csv')
nifty_It <- nifty_It[852:1251,c(3,7)]
nifty_It[,1] <- dmy(nifty_It[,1])
original_It <- nifty_It$Close
Update <- c()
end=original_It[382]
for (i in seq(1,18)){
end= end*exp(forecast_it@forecast$seriesFor[i])
print(end)
Update <- c(Update,end)
}
par(mfrow=c(1,1))
plot(c(1:382),original_It[1:382],type="l",col="black",xlim=c(1,420),
ylim=c(10000,45000),main="Forcasting the original stock value",
xlab="time point",ylab="close price of nifty-it ",xaxt='n')
lines(c(383:400),original_It[383:400],type="l",col="green")
lines(c(383:400),Update,type="p",col="red")
legend("bottomright",legend = c("forecasted stock values","original privious values",
"original future ground truths"),
fill = c("red","black","green"))
## RMSE
nifty_It<- read.csv('/home/mahendra/Downloads/sem_3/TSA/project/data/It_data.csv')
nifty_It <- nifty_It[852:1251,c(3,7)]
nifty_It[,1] <- dmy(nifty_It[,1])
tso_It <- zoo(nifty_It$Close, nifty_It$Date)
Return_It=CalculateReturns(tso_It, method = 'log')
true_returns_it <- na.omit(as.vector(Return_It))
predicted_returns_it <- c()
predicted_stocks_it <- c()
total_sqr_loss_in_returns_it <- 0
total_sqr_loss_in_stock_it <- 0
for (i in seq(1,18)){
fit_garch_it <- ugarchfit(spec = garch_it, data = true_returns_it[1:(381-1+i)] )
forecast_it<- ugarchforecast(fit_garch_it,n.ahead = 1 )
pred_return=forecast_it@forecast$seriesFor[1]
predicted_returns_it= c(predicted_returns_it,pred_return)
sqr_loss_return= (pred_return - true_returns_it[381+i])^2
total_sqr_loss_in_returns_it = total_sqr_loss_in_returns_it + sqr_loss_return
previous_stock = nifty_It$Close[382-1+i]
pred_stock = previous_stock*exp(pred_return)
predicted_stocks_it <- c( predicted_stocks_it, pred_stock)
print(pred_stock)
sqr_loss_stock= (pred_stock - nifty_It$Close[382+i])^2
total_sqr_loss_in_stock_it = total_sqr_loss_in_stock_it + sqr_loss_stock
}
predicted_returns_it
predicted_stocks_it
(total_sqr_loss_in_returns_it^0.5)/length(predicted_returns_it)
(total_sqr_loss_in_stock_it^0.5)/length(predicted_stocks_it)
plot(c(1:382),original_It[1:382],type="l",col="black",xlim=c(1,420),ylim=c(10000,45000),
main="Forcasting the original stock value",xlab="time point",
ylab="close price of nifty-it ",xaxt='n')
lines(c(383:400),original_It[383:400],type="l",col="green")
lines(c(383:400),predicted_stocks_it,type="l",col="red")
legend("bottomright",legend = c("forecasted stock values","original privious values",
"original future ground truths"),
fill = c("red","black","green"))
## zoom in
plot(c(1:382),original[1:382],type="l",col="black",xlim=c(370,420),ylim=c(17000,45000),
main="Forcasting the original stock value of it",xlab="time point",
ylab="close price of nifty-it ",xaxt='n')
lines(c(383:400),original[383:400],type="b",col="green")
lines(c(383:400),predicted_stocks_it,type="b",col="red")
legend("bottomright",legend = c("forecasted stock values","original privious values",
"original future ground truths"),
fill = c("red","black","green"))
#################
#data<-data.frame(NIFTY-IT=as.numeric(nifty_it$Close),NIFTY-BANK=as.numeric(nifty_bank$Close),NIFTY-OIL=as.numeric(nifty_oil$Close),NIFTY-METAL=as.numeric(nifty_metal$Close))
data<- cbind(nifty_it$Close,nifty_bank$Close,nifty_oil$Close,nifty_metal$Close)
colnames(data)<-c("NIFTY-IT","NIFTY-BANK","NIFTY-OIL","NIFTY-METAL")
correl<-cor(data)
library(corrplot)
corrplot(correl, type = "upper", method="square", order = "hclust",
tl.col = "black", tl.srt = 30,addCoef.col = "white")