-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tarmacPPO.py
161 lines (130 loc) · 5.29 KB
/
train_tarmacPPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#%% Imports
from config import config_dict
from cli import cli_train
from agents.tarmac_ppo import TarMAC_PPO
from env.MA_DemandResponse import MADemandResponseEnv
from metrics import Metrics
from utils import (
adjust_config_train,
normStateDict,
saveActorNetDict,
render_and_wandb_init,
test_tarmac_ppo_agent,
)
import os
import random
import numpy as np
from collections import namedtuple
import wandb
import torch
#%% Functions
def train_tarmac_ppo(env, agent, opt, config_dict, render, log_wandb, wandb_run):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
id_rng = np.random.default_rng()
unique_ID = str(int(id_rng.random() * 1000000))
nb_time_steps = config_dict["training_prop"]["nb_time_steps"]
nb_tr_episodes = config_dict["training_prop"]["nb_tr_episodes"]
nb_tr_epochs = config_dict["training_prop"]["nb_tr_epochs"]
nb_tr_logs = config_dict["training_prop"]["nb_tr_logs"]
nb_test_logs = config_dict["training_prop"]["nb_test_logs"]
nb_inter_saving_actor = config_dict["training_prop"]["nb_inter_saving_actor"]
# Initialize render, if applicable
if render:
from env.renderer import Renderer
renderer = Renderer(env.nb_agents)
# Initialize variables
Transition = namedtuple(
"Transition", ["state", "action", "a_log_prob", "reward", "next_state", "done"]
)
time_steps_per_episode = int(nb_time_steps / nb_tr_episodes)
time_steps_per_epoch = int(nb_time_steps / nb_tr_epochs)
time_steps_train_log = int(nb_time_steps / nb_tr_logs)
time_steps_test_log = int(nb_time_steps / nb_test_logs)
time_steps_per_saving_actor = int(
nb_time_steps / (nb_inter_saving_actor + 1)
)
metrics = Metrics()
# Get first observation
obs_dict = env.reset()
for t in range(nb_time_steps):
# Render observation
if render:
renderer.render(obs_dict)
#### Passing actor one shot
# Select action with probabilities
obs_all = np.array([normStateDict(obs_dict[k], config_dict) for k in obs_dict.keys()])
actions_and_probs = agent.select_actions(obs_all)
action = {k: actions_and_probs[0][k] for k in obs_dict.keys()}
action_prob = {k: actions_and_probs[1][k] for k in obs_dict.keys()}
# Take action and get new transition
next_obs_dict, rewards_dict, dones_dict, info_dict = env.step(action)
# Render next observation
if render and t >= opt.render_after:
renderer.render(next_obs_dict)
# Episode is done
done = t % time_steps_per_episode == time_steps_per_episode - 1
# Storing in replay buffer
for k in obs_dict.keys():
agent.store_transition(
Transition(
state=normStateDict(obs_dict[k], config_dict),
action=action[k],
a_log_prob=action_prob[k],
reward=rewards_dict[k],
next_state=normStateDict(next_obs_dict[k], config_dict),
done=done,
),
k
)
# Update metrics
metrics.update(k, next_obs_dict, rewards_dict, env)
# Set next state as current state
obs_dict = next_obs_dict
# New episode, reset environment
if done:
print(f"New episode at time {t}")
obs_dict = env.reset()
# Epoch: update agent
if (
t % time_steps_per_epoch == time_steps_per_epoch - 1
and len(agent.buffer[0]) >= agent.batch_size
):
print(f"Updating agent at time {t}")
agent.update(t)
# Log train statistics
if t % time_steps_train_log == time_steps_train_log - 1: # Log train statistics
logged_metrics = metrics.log(t, time_steps_train_log)
if log_wandb:
wandb_run.log(logged_metrics)
metrics.reset()
# Test policy
if t % time_steps_test_log == time_steps_test_log - 1: # Test policy
print(f"Testing at time {t}")
metrics_test = test_tarmac_ppo_agent(agent, env, config_dict, opt, t)
if log_wandb:
wandb_run.log(metrics_test)
else:
print("Training step - {}".format(t))
if opt.save_actor_name and t % time_steps_per_saving_actor == 0 and t != 0:
path = os.path.join(".", "actors", opt.save_actor_name + unique_ID)
saveActorNetDict(agent, path, t)
if log_wandb:
wandb.save(os.path.join(path, "actor" + str(t) + ".pth"))
if render:
renderer.__del__(obs_dict)
if opt.save_actor_name:
path = os.path.join(".", "actors", opt.save_actor_name + unique_ID)
saveActorNetDict(agent, path)
if log_wandb:
wandb.save(os.path.join(path, "actor.pth"))
#%% Train
if __name__ == "__main__":
import os
os.environ["WANDB_SILENT"] = "true"
opt = cli_train()
adjust_config_train(opt, config_dict)
render, log_wandb, wandb_run = render_and_wandb_init(opt, config_dict)
random.seed(opt.env_seed)
env = MADemandResponseEnv(config_dict)
agent = TarMAC_PPO(config_dict, opt)
train_tarmac_ppo(env, agent, opt, config_dict, render, log_wandb, wandb_run)