-
Notifications
You must be signed in to change notification settings - Fork 2
/
MultiobjectiveClasses.py
1518 lines (1382 loc) · 72.7 KB
/
MultiobjectiveClasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Author : Malena Reiners, M. Sc. Mathematics
Description : Provides a multiobjective optimization toolbox for Keras (Keras Extension from Version 2.3.1)
Class inheritance of class Model (Multi) with adapted methods mcompile (multi loss compile), mfit (multi loss fit),
evaluate_multi,... and so on to handle multiple loss functions
Input(s) : A neural network architecture implemented as a Keras model with two loss function, see for example lenet5multimodel
in CustomModels.py
Output(s) : Depending on the method, all outputs adapted for the multi objective optimization process.
This is not a main file.
Notes : The code is implemented using Python 3.7, Keras 2.3.1 and Tensorflow 1.14.0
Please not that it is mandatory to use these versions of Tensorflow and Keras, otherwise the program cannot be executed.
The reason for this are the changed and adapted Keras and Tensorflow functions of this particular versions.
'''
import warnings
from scipy.sparse import issparse
from six.moves import zip
import matplotlib.pyplot as plt
import collections
import keras
from keras import backend as K
from keras import losses, optimizers
from keras import metrics as metrics_module
from keras.engine import training_arrays,training_utils
from keras.engine.training import Model
from keras.optimizers import Optimizer
from keras.utils import losses_utils
from keras.utils import np_utils
from keras.utils.generic_utils import (slice_arrays, to_list)
from keras.engine.training_utils import batch_shuffle
from keras.engine.training_utils import check_num_samples
from keras.engine.training_utils import make_batches
from keras.engine.training_utils import should_run_validation
from keras import callbacks as cbks
from keras.utils.generic_utils import Progbar
from keras.utils.generic_utils import unpack_singleton
from keras import regularizers
from keras.callbacks import LearningRateScheduler, LambdaCallback, Callback
# ### custom scripts
from CustomLosses import L1loss, L2loss, L1lossDense, L2lossConv, L1L2lossDenseConv
import numpy as np
if K.backend() == 'tensorflow':
import tensorflow as tf
# print(tf.__version__) #1.14.0
# print(keras.__version__) #2.3.1
"""Multi Class Model written for Keras"""
class Multi(Model):
"""The `Multi` class is a subclass of the class 'Model' which adds training & evaluation routines to a `Network`.
Multi loss functions can be used, only two different losses are supported for now.
"""
def mcompile(self, optimizer,
loss1=None,
loss2=None,
metrics=None,
loss1_weights=None,
loss2_weights=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
"""Configures the Multi model for training.
# Arguments
optimizer: String (name of optimizer) or optimizer instance.
See [optimizers](/optimizers).
loss1: String (name of objective function) or objective function or
`Loss` instance. See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
loss2: String (name of objective function) or objective function or
`Loss` instance. See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
metrics: List of metrics to be evaluated by the model
during training and testing. Typically you will use
`metrics=['accuracy']`. To specify different metrics for different
outputs of a multi-output model, you could also pass a dictionary,
such as
`metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}`.
You can also pass a list (len = len(outputs)) of lists of metrics
such as `metrics=[['accuracy'], ['accuracy', 'mse']]` or
`metrics=['accuracy', ['accuracy', 'mse']]`.
loss1_weights: Optional list or dictionary specifying scalar
coefficients (Python floats) to weight the loss1 contributions
of different model outputs.
The loss1 value that will be minimized by the model
will then be the *weighted sum* of all individual losses,
weighted by the `loss_weights` coefficients.
If a list, it is expected to have a 1:1 mapping
to the model's outputs. If a dict, it is expected to map
output names (strings) to scalar coefficients.
loss2_weights: Optional list or dictionary specifying scalar
coefficients (Python floats) to weight the loss2 contributions
of different model outputs.
The loss2 value that will be minimized by the model
will then be the *weighted sum* of all individual losses,
weighted by the `loss_weights` coefficients.
If a list, it is expected to have a 1:1 mapping
to the model's outputs. If a dict, it is expected to map
output names (strings) to scalar coefficients.
sample_weight_mode: If you need to do timestep-wise
sample weighting (2D weights), set this to `"temporal"`.
`None` defaults to sample-wise weights (1D).
If the model has multiple outputs, you can use a different
`sample_weight_mode` on each output by passing a
dictionary or a list of modes.
weighted_metrics: List of metrics to be evaluated and weighted
by sample_weight or class_weight during training and testing.
target_tensors: By default, Keras will create placeholders for the
model's target, which will be fed with the target data during
training. If instead you would like to use your own
target tensors (in turn, Keras will not expect external
Numpy data for these targets at training time), you
can specify them via the `target_tensors` argument. It can be
a single tensor (for a single-output model), a list of tensors,
or a dict mapping output names to target tensors.
**kwargs: When using the Theano/CNTK backends, these arguments
are passed into `K.function`.
When using the TensorFlow backend,
these arguments are passed into `tf.Session.run`.
# Raises
ValueError: In case of invalid arguments for
`optimizer`, `loss1`, `loss2`, `metrics` or `sample_weight_mode`.
"""
self.optimizer = optimizers.get(optimizer)
self.loss1 = loss1 or {}
self.loss2 = loss2 or {}
self._compile_metrics = metrics or []
self.loss1_weights = loss1_weights # if one uses more than one "loss1" function give weights for weighted sum method
self.loss2_weights = loss2_weights # if one uses more than one "loss2" function give weights for weighted sum method
self.sample_weight_mode = sample_weight_mode
self._compile_weighted_metrics = weighted_metrics
# List of stateful metric functions. Used for resetting metric state during
# training/eval.
self._compile_metric_functions = []
# List of metric wrappers on output losses.
self._output_loss_metrics = None
if not self.built:
# Model is not compilable because
# it does not know its number of inputs
# and outputs, nor their shapes and names.
# We will compile after the first
# time the model gets called on training data.
return
self._is_compiled = True
# Prepare list of loss functions, same size as model outputs.
self.loss_functions1 = training_utils.prepare_loss_functions(
self.loss1, self.output_names)
self.loss_functions2 = training_utils.prepare_loss_functions(
self.loss2, self.output_names)
################### additional loss functions only in case of pruning and regularization important #################################
### for the option 'split' and only optional (for comparison reasons when regularization is included as a second objective function)
self.loss_functions3 = training_utils.prepare_loss_functions(
L1loss(self), self.output_names) #loss l1
self.loss_functions4 = training_utils.prepare_loss_functions(
L2loss(self), self.output_names) #loss l2
self.loss_functions5 = training_utils.prepare_loss_functions(
L1lossDense(self), self.output_names) #loss l1 dense
self.loss_functions6 = training_utils.prepare_loss_functions(
L2lossConv(self), self.output_names) #loss l2 conv
#####################################################################################################################################
self._feed_outputs = []
self._feed_output_names = []
self._feed_output_shapes = []
self._feed_loss1_fns = []
self._feed_loss2_fns = []
# if loss function1 is None, then this output will be skipped during total
# loss calculation and feed targets preparation.
self.skip_target_indices = []
skip_target_weighing_indices = []
for i, loss_function in enumerate(self.loss_functions1):
if loss_function is None:
self.skip_target_indices1.append(i)
skip_target_weighing_indices.append(i)
# Prepare output masks.
masks = self.compute_mask(self.inputs, mask=None)
if masks is None:
masks = [None for _ in self.outputs]
masks = to_list(masks)
# Prepare list loss weights, same size of model outputs.
self.loss_weights_list1 = training_utils.prepare_loss_weights(
self.output_names, loss1_weights) # used by prepare
self.loss_weights_list2 = training_utils.prepare_loss_weights(
self.output_names, loss2_weights)
# Prepare targets of model.
self.targets = []
self._feed_targets = []
if target_tensors is not None:
if isinstance(target_tensors, list):
if len(target_tensors) != len(self.outputs):
raise ValueError(
'When passing a list as `target_tensors`, '
'it should have one entry per model output. '
'The model has ' + str(len(self.outputs)) +
' outputs, but you passed target_tensors=' +
str(target_tensors))
elif isinstance(target_tensors, dict):
for name in target_tensors:
if name not in self.output_names:
raise ValueError('Unknown entry in `target_tensors` '
'dictionary: "' + name + '". '
'Only expected the following keys: ' +
str(self.output_names))
tmp_target_tensors = []
for name in self.output_names:
tmp_target_tensors.append(target_tensors.get(name, None))
target_tensors = tmp_target_tensors
elif K.is_tensor(target_tensors):
if len(self.outputs) != 1:
raise ValueError('The model has ' + str(len(self.outputs)) +
' outputs, but you passed a single tensor as '
'`target_tensors`. Expected a list or a dict '
'of tensors.')
target_tensors = [target_tensors]
else:
raise TypeError('Expected `target_tensors` to be a tensor, '
'a list of tensors, or dict of tensors, but got:',
target_tensors)
for i in range(len(self.outputs)):
if i in self.skip_target_indices:
self.targets.append(None)
else:
shape = K.int_shape(self.outputs[i])
name = self.output_names[i]
if target_tensors is not None:
target = target_tensors[i]
else:
target = None
if target is None or K.is_placeholder(target):
if target is None:
target = K.placeholder(
ndim=len(shape),
name=name + '_target',
sparse=K.is_sparse(self.outputs[i]),
dtype=K.dtype(self.outputs[i]))
self._feed_targets.append(target)
self._feed_outputs.append(self.outputs[i])
self._feed_output_names.append(name)
self._feed_output_shapes.append(shape)
self._feed_loss1_fns.append(self.loss_functions1[i])
self._feed_loss2_fns.append(self.loss_functions2[i])
else:
skip_target_weighing_indices.append(i)
self.targets.append(target)
# Prepare sample weights.
self._set_sample_weight_attributes(
sample_weight_mode, skip_target_weighing_indices)
# Save all metric attributes per output of the model.
self._cache_output_metric_attributes_multi(metrics, weighted_metrics)
# Set metric attributes on model.
self._set_metric_attributes_multi()
# Invoke metric functions (unweighted) for all the outputs.
self._handle_metrics(
self.outputs,
targets=self.targets,
skip_target_masks=[l is None for l in self.loss_functions1],
sample_weights=self.sample_weights,
masks=masks)
# Compute total loss.
# Used to keep track of the total loss value (stateless)
# eg., total_loss = loss_weight_1 * output_1_loss_fn(...) +
# loss_weight_2 * output_2_loss_fn(...) +
# layer losses.
self.total_loss1 = self._prepare_total_losses(self.loss_functions1, self.loss_weights_list1,masks)
self.total_loss2 = self._prepare_total_losses(self.loss_functions2, self.loss_weights_list2, masks)
################### additional loss functions only in case of pruning and regularization important #################################
### only for split option (regularization for different kind of layers)
self.total_loss3 = self._prepare_total_losses(self.loss_functions3, self.loss_weights_list1, masks) #loss l1
self.total_loss4 = self._prepare_total_losses(self.loss_functions4, self.loss_weights_list2, masks) #loss l2
self.total_loss5 = self._prepare_total_losses(self.loss_functions5, self.loss_weights_list1, masks) #loss l1 dense
self.total_loss6 = self._prepare_total_losses(self.loss_functions6, self.loss_weights_list2, masks) #loss l2 conv
#####################################################################################################################################
# Functions for train, test and predict will.
# be compiled lazily when required.
# This saves time when the user is not using all functions.
self._function_kwargs = kwargs
self.train_function = None
self.test_function = None
self.predict_function = None
# Collected trainable weights, sorted in topological order.
trainable_weights = self.trainable_weights
self._collected_trainable_weights = trainable_weights
def metrics_names(self):
"""Returns the model's display labels for all outputs."""
metric_names = ['loss1'] + ['loss2'] + ['c1'] + ['c2']
if self._is_compiled:
# Add output loss metric names to the metric names list.
if len(self.outputs) > 1:
metric_names.extend([
self.output_names[i] + '_loss'
for i in range(len(self.outputs))
if i not in self.skip_target_indices
])
# Add compile metrics/weighted metrics' names to the metric names list.
metric_names.extend([m.name for m in self._compile_metric_functions])
# Add metric names from layers.
for layer in self.layers:
metric_names += [m.name for m in layer._metrics]
metric_names += [m.name for m in self._metrics]
return metric_names
def _make_train_function_multi(self):
if not hasattr(self, 'train_function'):
raise RuntimeError('You must compile your model before using it.')
self._check_trainable_weights_consistency()
if self.train_function is None:
inputs = (self._feed_inputs +
self._feed_targets +
self._feed_sample_weights)
if self._uses_dynamic_learning_phase():
inputs += [K.learning_phase()]
with K.name_scope('training'):
with K.name_scope(self.optimizer.__class__.__name__):
training_updates, self.c1, self.c2 = self.optimizer.get_updates(
params=self._collected_trainable_weights,
loss1=self.total_loss1, loss2=self.total_loss2, loss3=self.total_loss3, loss4=self.total_loss4, loss5=self.total_loss5, loss6= self.total_loss6)
updates = self.updates + training_updates
metrics = self._get_training_eval_metrics()
metrics_tensors = [
m._call_result for m in metrics if hasattr(m, '_call_result')
]
metrics_updates = []
for m in metrics:
metrics_updates.extend(m.updates)
# Gets loss and metrics. Updates weights at each call.
self.train_function = K.function(
inputs,
[self.total_loss1] + [self.total_loss2] + [self.c1] + [self.c2] + metrics_tensors, # output
updates=updates + metrics_updates,
name='train_function',
**self._function_kwargs)
def _make_test_function_multi(self):
if not hasattr(self, 'test_function'):
raise RuntimeError('You must compile your model before using it.')
if self.test_function is None:
inputs = (self._feed_inputs +
self._feed_targets +
self._feed_sample_weights)
if self._uses_dynamic_learning_phase():
inputs += [K.learning_phase()]
metrics = self._get_training_eval_metrics()
metrics_tensors = [
m._call_result for m in metrics if hasattr(m, '_call_result')
]
metrics_updates = []
for m in metrics:
if m is not 'c1' and m is not 'c2':
metrics_updates.extend(m.updates)
# Return loss and metrics, no gradient updates.
# Does update the network states.
self.test_function = K.function(
inputs,
[self.total_loss1] + [self.total_loss2] + metrics_tensors,
updates=self.state_updates + metrics_updates,
name='test_function',
**self._function_kwargs)
def _standardize_user_data_multi(self, x,
y=None,
sample_weight=None,
class_weight=None,
check_array_lengths=True,
batch_size=None):
all_inputs = []
if not self.built:
# We need to use `x` to set the model inputs.
# We type-check that `x` and `y` are either single arrays
# or lists of arrays.
if isinstance(x, (list, tuple)):
if not all(isinstance(v, np.ndarray) or
K.is_tensor(v) for v in x):
raise ValueError('Please provide as model inputs '
'either a single '
'array or a list of arrays. '
'You passed: x=' + str(x))
all_inputs += list(x)
elif isinstance(x, dict):
raise ValueError('Please do not pass a dictionary '
'as model inputs.')
else:
if not isinstance(x, np.ndarray) and not K.is_tensor(x):
raise ValueError('Please provide as model inputs '
'either a single '
'array or a list of arrays. '
'You passed: x=' + str(x))
all_inputs.append(x)
# Build the model using the retrieved inputs (value or symbolic).
# If values, then in symbolic-mode placeholders will be created
# to match the value shapes.
if not self.inputs:
self._set_inputs(x)
if y is not None:
if not self.optimizer:
raise RuntimeError('You must compile a model before '
'training/testing. '
'Use `model.compile(optimizer, loss)`.')
if not self._is_compiled:
# On-the-fly compilation of the model.
# We need to use `y` to set the model targets.
if isinstance(y, (list, tuple)):
if not all(isinstance(v, np.ndarray) or
K.is_tensor(v) for v in y):
raise ValueError('Please provide as model targets '
'either a single '
'array or a list of arrays. '
'You passed: y=' + str(y))
elif isinstance(y, dict):
raise ValueError('Please do not pass a dictionary '
'as model targets.')
else:
if not isinstance(y, np.ndarray) and not K.is_tensor(y):
raise ValueError('Please provide as model targets '
'either a single '
'array or a list of arrays. '
'You passed: y=' + str(y))
# Typecheck that all inputs are *either* value *or* symbolic.
if y is not None:
all_inputs += to_list(y, allow_tuple=True)
if any(K.is_tensor(v) for v in all_inputs):
if not all(K.is_tensor(v) for v in all_inputs):
raise ValueError('Do not pass inputs that mix Numpy '
'arrays and symbolic tensors. '
'You passed: x=' + str(x) +
'; y=' + str(y))
# Handle target tensors if any passed.
y = to_list(y, allow_tuple=True)
target_tensors = [v for v in y if K.is_tensor(v)]
if not target_tensors:
target_tensors = None
self.mcompile(optimizer=self.optimizer,
loss1=self.loss1,
loss2=self.loss2,
metrics=self._compile_metrics,
weighted_metrics=self._compile_weighted_metrics,
loss1_weights=self.loss1_weights,
loss2_weights=self.loss2_weights,
target_tensors=target_tensors)
# If `x` and `y` were all symbolic,
# then the model should not be fed any inputs and targets.
# Note: in this case, `any` and `all` are equivalent since we disallow
# mixed symbolic/value inputs.
if any(K.is_tensor(v) for v in all_inputs):
return [], [], []
# What follows is input validation and standardization to list format,
# in the case where all inputs are value arrays.
if not self._is_graph_network:
# Case: symbolic-mode subclassed network.
# Do not do shape validation.
feed_input_names = self._feed_input_names
feed_input_shapes = None
else:
# Case: symbolic-mode graph network.
# In this case, we run extensive shape validation checks.
feed_input_names = self._feed_input_names
feed_input_shapes = self._feed_input_shapes
# Standardize the inputs.
x = training_utils.standardize_input_data(
x,
feed_input_names,
feed_input_shapes,
check_batch_axis=False, # Don't enforce the batch size.
exception_prefix='input')
if y is not None:
if not self._is_graph_network:
feed_output_names = self._feed_output_names
feed_output_shapes = None
# Sample weighting not supported in this case.
# TODO: consider supporting it.
feed_sample_weight_modes = [None for _ in self.outputs]
else:
feed_output_names = self._feed_output_names
feed_sample_weight_modes = self._feed_sample_weight_modes
feed_output_shapes = []
for output_shape, loss1_fn, loss2_fn in zip(self._feed_output_shapes,
self._feed_loss1_fns, self._feed_loss2_fns):
if ((isinstance(loss1_fn, losses.LossFunctionWrapper) and
loss1_fn.fn == losses.sparse_categorical_crossentropy)) or (
isinstance(
loss1_fn,
losses.SparseCategoricalCrossentropy)):
if K.image_data_format() == 'channels_first' and len(
output_shape) in [4, 5]:
feed_output_shapes.append(
(output_shape[0], 1) + output_shape[2:])
else:
feed_output_shapes.append(output_shape[:-1] + (1,))
elif (not isinstance(loss1_fn, losses.Loss) or
(isinstance(loss1_fn, losses.LossFunctionWrapper) and
(getattr(losses, loss1_fn.fn.__name__, None) is None))):
# If the given loss is not an instance of the `Loss` class
# (custom class) or if the loss function that is wrapped is
# not in the `losses` module, then it is a user-defined loss
# and we make no assumptions about it.
feed_output_shapes.append(None)
else:
feed_output_shapes.append(output_shape)
if ((isinstance(loss2_fn, losses.LossFunctionWrapper) and
loss2_fn.fn == losses.sparse_categorical_crossentropy)) or (
isinstance(
loss2_fn, losses.SparseCategoricalCrossentropy)):
if K.image_data_format() == 'channels_first' and len(
output_shape) in [4, 5]:
feed_output_shapes.append(
(output_shape[0], 1) + output_shape[2:])
else:
feed_output_shapes.append(output_shape[:-1] + (1,))
elif (not isinstance(loss2_fn, losses.Loss) or
(isinstance(loss2_fn, losses.LossFunctionWrapper) and
(getattr(losses, loss2_fn.fn.__name__, None) is None))):
# If the given loss is not an instance of the `Loss` class
# (custom class) or if the loss function that is wrapped is
# not in the `losses` module, then it is a user-defined loss
# and we make no assumptions about it.
feed_output_shapes.append(None)
else:
feed_output_shapes.append(output_shape)
# Standardize the outputs.
y = training_utils.standardize_input_data(
y,
feed_output_names,
feed_output_shapes,
check_batch_axis=False, # Don't enforce the batch size.
exception_prefix='target')
# Generate sample-wise weight values given the `sample_weight` and
# `class_weight` arguments.
sample_weights = training_utils.standardize_sample_weights(
sample_weight, feed_output_names)
class_weights = training_utils.standardize_class_weights(
class_weight, feed_output_names)
sample_weights = [
training_utils.standardize_weights(ref, sw, cw, mode)
for (ref, sw, cw, mode) in
zip(y, sample_weights, class_weights,
feed_sample_weight_modes)
]
# Check that all arrays have the same length.
if check_array_lengths:
training_utils.check_array_length_consistency(x, y, sample_weights)
if self._is_graph_network:
# Additional checks to avoid users mistakenly
# using improper loss fns.
training_utils.check_loss_and_target_compatibility(
y, self._feed_loss1_fns, feed_output_shapes)
training_utils.check_loss_and_target_compatibility(
y, self._feed_loss2_fns, feed_output_shapes)
else:
y = []
sample_weights = []
if self.stateful and batch_size:
# Check that for stateful networks, number of samples is a multiple
# of the static batch size.
if x[0].shape[0] % batch_size != 0:
raise ValueError('In a stateful network, '
'you should only pass inputs with '
'a number of samples that can be '
'divided by the batch size. Found: ' +
str(x[0].shape[0]) + ' samples')
return x, y, sample_weights
def _prepare_total_losses(self, loss_functions, loss_weights_list, masks=None):
"""Computes total loss from loss functions.
# Arguments
skip_target_indices: A list of indices of model outputs where loss
function is None.
masks: List of mask values corresponding to each model output.
# Returns
A list of loss weights of python floats.
"""
total_loss = None
with K.name_scope('loss'):
zipped_inputs = zip(self.targets, self.outputs, loss_functions,
self.sample_weights, masks, loss_weights_list)
for i, (y_true, y_pred, loss_fn, sample_weight, mask,
loss_weight) in enumerate(zipped_inputs):
if i in self.skip_target_indices:
continue
loss_name = self.output_names[i] + '_loss' # only for different output layers relevant
with K.name_scope(loss_name):
if mask is not None:
mask = K.cast(mask, y_pred.dtype)
# Update weights with mask.
if sample_weight is None:
sample_weight = mask
else:
# Update dimensions of weights to match with mask.
mask, _, sample_weight = (
losses_utils.squeeze_or_expand_dimensions(
mask, None, sample_weight))
sample_weight *= mask
output_loss = loss_fn(
y_true, y_pred, sample_weight=sample_weight)
if len(self.outputs) > 1:
update_ops = self._output_loss_metrics[i].update_state(
output_loss)
with K.control_dependencies(update_ops): # For TF
self._output_loss_metrics[i].result()
if total_loss is None:
total_loss = loss_weight * output_loss
else:
total_loss += loss_weight * output_loss
if total_loss is None:
if not self.losses:
raise ValueError('The model cannot be compiled '
'because it has no loss to optimize.')
else:
total_loss = 0.
# Add regularization penalties and other layer-specific losses. # not used when split option is used
if not self.optimizer.split:
for loss_tensor in self.losses:
total_loss += loss_tensor
return K.mean(total_loss)
def _add_unique_metric_name_multi(self, metric_name, output_index):
"""Makes the metric name unique and adds it to the model's metric name list.
If there are multiple outputs for which the metrics are calculated, the
metric names have to be made unique by appending an integer.
# Arguments
metric_name: Metric name that corresponds to the metric specified by the
user. For example: 'acc'.
output_index: The index of the model output for which the metric name is
being added.
# Returns
string, name of the model's unique metric name
"""
if len(self.output_names) > 1:
metric_name = '%s_%s' % (self.output_names[output_index], metric_name)
j = 1
base_metric_name = metric_name
self.metric_names = self.metrics_names() ## added, as otherwise self.metric_names does not exist
while metric_name in self.metric_names:
metric_name = '%s_%d' % (base_metric_name, j)
j += 1
return metric_name
def _set_metric_attributes_multi(self):
"""Sets the metric attributes on the model for all the model outputs."""
updated_per_output_metrics = []
updated_per_output_weighted_metrics = []
for i in range(len(self.outputs)):
if i in self.skip_target_indices:
updated_per_output_metrics.append(self._per_output_metrics[i])
updated_per_output_weighted_metrics.append(
self._per_output_weighted_metrics[i])
continue
updated_per_output_metrics.append(
self._set_per_output_metric_attributes_multi(
self._per_output_metrics[i], i))
updated_per_output_weighted_metrics.append(
self._set_per_output_metric_attributes_multi(
self._per_output_weighted_metrics[i], i))
# Create a metric wrapper for each output loss. This computes mean of an
# output loss across mini-batches (irrespective of how we reduce within a
# batch).
if len(self.outputs) > 1:
self._output_loss_metrics = [
metrics_module.Mean(name=self.output_names[i] + '_loss')
for i in range(len(self.loss_functions1))
]
self._per_output_metrics = updated_per_output_metrics
self._per_output_weighted_metrics = updated_per_output_weighted_metrics
def _cache_output_metric_attributes_multi(self, metrics, weighted_metrics):
"""Caches metric name and function attributes for every model output."""
output_shapes = []
for output in self.outputs:
if output is None:
output_shapes.append(None)
else:
output_shapes.append(list(output.shape))
self._per_output_metrics = training_utils.collect_per_output_metric_info(
metrics, self.output_names, output_shapes, self.loss_functions1)
self._per_output_weighted_metrics = (
training_utils.collect_per_output_metric_info(
weighted_metrics,
self.output_names,
output_shapes,
self.loss_functions1,
is_weighted=True))
def _set_per_output_metric_attributes_multi(self, metrics_dict, output_index):
"""Sets the metric attributes on the model for the given output.
# Arguments
metrics_dict: A dict with metric names as keys and metric fns as values.
output_index: The index of the model output for which the metric
attributes are added.
# Returns
Metrics dict updated with unique metric names as keys.
"""
updated_metrics_dict = collections.OrderedDict()
for metric_name, metric_fn in metrics_dict.items():
metric_name = self._add_unique_metric_name_multi(metric_name, output_index)
# Update the name on the metric class to be the unique generated name.
metric_fn.name = metric_name
updated_metrics_dict[metric_name] = metric_fn
# Keep track of metric function.
self._compile_metric_functions.append(metric_fn)
return updated_metrics_dict
def mfit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
**kwargs):
"""Trains the model for a fixed number of epochs (iterations on a dataset).
# Arguments
x: Input data. It could be:
- A Numpy array (or array-like), or a list of arrays
(in case the model has multiple inputs).
- A dict mapping input names to the corresponding
array/tensors, if the model has named inputs.
- A generator or `keras.utils.Sequence` returning
`(inputs, targets)` or `(inputs, targets, sample weights)`.
- None (default) if feeding from framework-native
tensors (e.g. TensorFlow data tensors).
y: Target data. Like the input data `x`,
it could be either Numpy array(s), framework-native tensor(s),
list of Numpy arrays (if the model has multiple outputs) or
None (default) if feeding from framework-native tensors
(e.g. TensorFlow data tensors).
If output layers in the model are named, you can also pass a
dictionary mapping output names to Numpy arrays.
If `x` is a generator, or `keras.utils.Sequence` instance,
`y` should not be specified (since targets will be obtained
from `x`).
batch_size: Integer or `None`.
Number of samples per gradient update.
If unspecified, `batch_size` will default to 32.
Do not specify the `batch_size` if your data is in the
form of symbolic tensors, generators, or `Sequence` instances
(since they generate batches).
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached.
verbose: Integer. 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.
callbacks: List of `keras.callbacks.Callback` instances.
List of callbacks to apply during training and validation
(if ).
See [callbacks](/callbacks).
validation_split: Float between 0 and 1.
Fraction of the training data to be used as validation data.
The model will set apart this fraction of the training data,
will not train on it, and will evaluate
the loss and any model metrics
on this data at the end of each epoch.
The validation data is selected from the last samples
in the `x` and `y` data provided, before shuffling.
This argument is not supported when `x` is a generator or
`Sequence` instance.
validation_data: Data on which to evaluate
the loss and any model metrics at the end of each epoch.
The model will not be trained on this data.
`validation_data` will override `validation_split`.
`validation_data` could be:
- tuple `(x_val, y_val)` of Numpy arrays or tensors
- tuple `(x_val, y_val, val_sample_weights)` of Numpy arrays
- dataset or a dataset iterator
For the first two cases, `batch_size` must be provided.
For the last case, `validation_steps` must be provided.
shuffle: Boolean (whether to shuffle the training data
before each epoch) or str (for 'batch').
'batch' is a special option for dealing with the
limitations of HDF5 data; it shuffles in batch-sized chunks.
Has no effect when `steps_per_epoch` is not `None`.
class_weight: Optional dictionary mapping class indices (integers)
to a weight (float) value, used for weighting the loss function
(during training only).
This can be useful to tell the model to
"pay more attention" to samples from
an under-represented class.
sample_weight: Optional Numpy array of weights for
the training samples, used for weighting the loss function
(during training only). You can either pass a flat (1D)
Numpy array with the same length as the input samples
(1:1 mapping between weights and samples),
or in the case of temporal data,
you can pass a 2D array with shape
`(samples, sequence_length)`,
to apply a different weight to every timestep of every sample.
In this case you should make sure to specify
`sample_weight_mode="temporal"` in `compile()`. This argument
is not supported when `x` generator, or `Sequence` instance,
instead provide the sample_weights as the third element of `x`.
initial_epoch: Integer.
Epoch at which to start training
(useful for resuming a previous training run).
steps_per_epoch: Integer or `None`.
Total number of steps (batches of samples)
before declaring one epoch finished and starting the
next epoch. When training with input tensors such as
TensorFlow data tensors, the default `None` is equal to
the number of samples in your dataset divided by
the batch size, or 1 if that cannot be determined.
validation_steps: Only relevant if `steps_per_epoch`
is specified. Total number of steps (batches of samples)
to validate before stopping.
validation_steps: Only relevant if `validation_data` is provided
and is a generator. Total number of steps (batches of samples)
to draw before stopping when performing validation at the end
of every epoch.
validation_freq: Only relevant if validation data is provided. Integer
or list/tuple/set. If an integer, specifies how many training
epochs to run before a new validation run is performed, e.g.
`validation_freq=2` runs validation every 2 epochs. If a list,
tuple, or set, specifies the epochs on which to run validation,
e.g. `validation_freq=[1, 2, 10]` runs validation at the end
of the 1st, 2nd, and 10th epochs.
max_queue_size: Integer. Used for generator or `keras.utils.Sequence`
input only. Maximum size for the generator queue.
If unspecified, `max_queue_size` will default to 10.
workers: Integer. Used for generator or `keras.utils.Sequence` input
only. Maximum number of processes to spin up
when using process-based threading. If unspecified, `workers`
will default to 1. If 0, will execute the generator on the main
thread.
use_multiprocessing: Boolean. Used for generator or
`keras.utils.Sequence` input only. If `True`, use process-based
threading. If unspecified, `use_multiprocessing` will default to
`False`. Note that because this implementation relies on
multiprocessing, you should not pass non-picklable arguments to
the generator as they can't be passed easily to children processes.
**kwargs: Used for backwards compatibility.
# Returns
A `History` object. Its `History.history` attribute is
a record of training loss values and metrics values
at successive epochs, as well as validation loss values
and validation metrics values (if applicable).
# Raises
RuntimeError: If the model was never compiled.
ValueError: In case of mismatch between the provided input data
and what the model expects.
"""
# Legacy support
if 'nb_epoch' in kwargs:
warnings.warn('The `nb_epoch` argument in `fit` '
'has been renamed `epochs`.', stacklevel=2)
epochs = kwargs.pop('nb_epoch')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
if x is None and y is None and steps_per_epoch is None:
raise ValueError('If fitting from data tensors, '
'you should specify the `steps_per_epoch` '
'argument.')
batch_size = self._validate_or_infer_batch_size(
batch_size, steps_per_epoch, x)
# Case 1: generator-like. Input is Python generator,
# or Sequence object, or iterator.
if training_utils.is_generator_or_sequence(x):
training_utils.check_generator_arguments(
y, sample_weight, validation_split=validation_split)
return self.fit_generator(
x,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
validation_data=validation_data,
validation_steps=validation_steps,
validation_freq=validation_freq,
class_weight=class_weight,
max_queue_size=max_queue_size,
workers=workers,
use_multiprocessing=use_multiprocessing,
shuffle=shuffle,
initial_epoch=initial_epoch)
# Case 2: Symbolic tensors or Numpy array-like.
x, y, sample_weights = self._standardize_user_data_multi(
x, y,
sample_weight=sample_weight,
class_weight=class_weight,
batch_size=batch_size)
# Prepare validation data.
do_validation = False
if validation_data:
do_validation = True
if len(validation_data) == 2:
val_x, val_y = validation_data
val_sample_weight = None
elif len(validation_data) == 3:
val_x, val_y, val_sample_weight = validation_data
else:
raise ValueError('When passing validation_data, '
'it must contain 2 (x_val, y_val) '
'or 3 (x_val, y_val, val_sample_weights) '
'items, however it contains %d items' %
len(validation_data))
val_x, val_y, val_sample_weights = self._standardize_user_data_multi(
val_x, val_y,
sample_weight=val_sample_weight,
batch_size=batch_size)
if self._uses_dynamic_learning_phase():
val_inputs = val_x + val_y + val_sample_weights + [0]
else:
val_inputs = val_x + val_y + val_sample_weights
elif validation_split and 0. < validation_split < 1.:
if any(K.is_tensor(t) for t in x):
raise ValueError(
'If your data is in the form of symbolic tensors, '