-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheffective_training_jsma.py
226 lines (179 loc) · 10.7 KB
/
effective_training_jsma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from six.moves import xrange
import tensorflow as tf
from tensorflow.python.platform import flags
import logging
import time
import warnings
import math
import os
from cleverhans.attacks import SaliencyMapMethod
from cleverhans.utils import other_classes, set_log_level, batch_indices, _ArgsWrapper, create_logger
from cleverhans.utils import pair_visual, grid_visual, AccuracyReport
from cleverhans.utils_mnist import data_mnist
from cleverhans.utils_tf import model_train, model_eval, model_argmax, model_loss
from cleverhans.utils_keras import KerasModelWrapper, cnn_model
from cleverhans_tutorials.tutorial_models import make_basic_cnn
_logger = create_logger("cleverhans.utils.tf")
FLAGS = flags.FLAGS
"""
Adversarial training done as per cost function in Ian Goodfellow's paper on adversarial
examples.
"""
def effective_train_jsma(train_start=0, train_end=50, test_start=0,
test_end=500, viz_enabled=False, nb_epochs=6,
batch_size=128, nb_classes=10, source_samples=10,
learning_rate=0.001):
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Get MNIST test data
X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
train_end=train_end,
test_start=test_start,
test_end=test_end)
# Create TF session and set as Keras backend session
sess = tf.Session()
print("Created TensorFlow session.")
# sess.run(tf.global_variables_initializer())
rng = np.random.RandomState([2017, 8, 30])
# Define input TF placeholder
x1 = tf.placeholder(tf.float32, shape=(None, 28, 28, 1)) # for clean data
x2 = tf.placeholder(tf.float32, shape=(None, 28, 28, 1)) # for adv data
y = tf.placeholder(tf.float32, shape=(None, 10)) # for adv clean targets
# Initialize the model
model = make_basic_cnn()
preds = model(x1)
preds_adv = model(x2)
# Instantiate a SaliencyMapMethod attack object
jsma = SaliencyMapMethod(model, back='tf', sess=sess)
jsma_params = {'theta': 1., 'gamma': 0.1,
'clip_min': 0., 'clip_max': 1.,
'y_target': None}
# Define loss
loss = (model_loss(y, preds) + model_loss(y, preds_adv)) / 2
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_step = train_step.minimize(loss)
def evaluate_2(adv_examples_last_batch, adv_clean_labels_last_batch):
# Accuracy of adversarially trained model on legitimate test inputs
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x1, y, preds, X_test, Y_test,
args=eval_params)
print('Test accuracy on legitimate examples: %0.4f' % accuracy)
report.adv_train_clean_eval = accuracy
# Accuracy of the adversarially trained model on adversarial examples
accuracy = model_eval(sess, x2, y, preds_adv, adv_examples_last_batch,
adv_clean_labels_last_batch, args=eval_params)
print('Test accuracy on last batch of adversarial examples: %0.4f' % accuracy)
report.adv_train_adv_eval = accuracy
with sess.as_default():
tf.global_variables_initializer().run()
for epoch in xrange(nb_epochs):
# Compute number of batches
nb_batches = int(math.ceil(float(len(X_train)) / batch_size))
assert nb_batches * batch_size >= len(X_train)
# Indices to shuffle training set
index_shuf = list(range(len(X_train)))
rng.shuffle(index_shuf)
prev = time.time()
for batch in range(nb_batches):
print('--------------------------------------')
# create an array for storing adv examples
print('batch: %i/%i' % (batch+1, nb_batches))
adv_examples = np.empty([1,28,28,1])
# for target labels
#adv_targets = np.empty([1,10])
# corresponding clean/correct label
adv_clean_labels = np.empty([1,10])
# correspongding clean data
adv_clean_examples = np.empty([1,28,28,1])
for sample_ind in xrange(0, batch_size):
print('Attacking input %i/%i' % (sample_ind + 1, batch_size))
# Compute batch start and end indices
start, end = batch_indices(batch, len(X_train), batch_size)
X_this_batch = X_train[index_shuf[start:end]]
Y_this_batch = Y_train[index_shuf[start:end]]
# Perform one training step
# feed_dict = {x: X_train[index_shuf[start:end]],y: Y_train[index_shuf[start:end]]}
sample = X_this_batch[sample_ind:(sample_ind+1)] # generate from training data
# We want to find an adversarial example for each possible target class
# (i.e. all classes that differ from the label given in the dataset)
current_class = int(np.argmax(Y_this_batch[sample_ind])) # generate from training data
target_classes = other_classes(nb_classes, current_class)
print('Current class is ', current_class)
# For the grid visualization, keep original images along the diagonal
# grid_viz_data[current_class, current_class, :, :, :] = np.reshape(
# sample, (img_rows, img_cols, channels))
# Loop over all target classes
for target in target_classes:
print('Generating adv. example for target class %i' % target)
# This call runs the Jacobian-based saliency map approach
one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
#create fake target
one_hot_target[0, target] = 1
jsma_params['y_target'] = one_hot_target
adv_x = jsma.generate_np(sample, **jsma_params) # get numpy array (1, 28, 28, 1), not Tensor
# Check if success was achieved
# res = int(model_argmax(sess, x, preds, adv_x) == target)
# if succeeds
# if res == 1:
# append new adv_x to adv_examples array
# append sample here, so that the number of times sample is appended mmatches number of adv_ex.
adv_examples = np.append(adv_examples, adv_x, axis=0)
#adv_targets = np.append(adv_targets, one_hot_target, axis=0)
adv_clean_labels = np.append(adv_clean_labels, np.expand_dims(Y_this_batch[sample_ind],axis=0), axis=0) # generate from training data
adv_clean_examples = np.append(adv_clean_examples, sample, axis=0)
# what we have for this batch, batch_size * 9 data
adv_examples = adv_examples[1:,:,:,:]
#adv_targets = adv_targets[1:,:]
adv_clean_labels = adv_clean_labels[1:,:]
adv_clean_examples = adv_clean_examples[1:,:,:,:]
feed_dict = {x1: adv_clean_examples, x2: adv_examples, y: adv_clean_labels}
train_step.run(feed_dict=feed_dict)
cur = time.time()
_logger.info("Epoch " + str(epoch) + " took " + str(cur - prev) + " seconds")
evaluate_2(adv_examples, adv_clean_labels)
print('Training finished.')
# report on clean test data
preds_test = model(x1)
eval_par = {'batch_size': 10}
acc_clean = model_eval(sess, x1, y, preds_test, X_test, Y_test, args=eval_par)
print('Test accuracy on legitimate examples: %0.4f\n' % acc_clean)
# reload fgsm successfully attacking adv test data
with np.load("adversarial_fgsm.npz") as data:
adv_X_test, adv_clean_Y_test, adv_clean_X_test = data['adv_examples'], data['adv_clean_labels'], data['adv_clean_examples']
print('FGSM adversarial data are successfully reloaded.')
preds_adv_test = model(x1)
# Evaluate the accuracy of the MNIST model on adversarial examples
# eval_par = {'batch_size': 10}
acc = model_eval(sess, x1, y, preds_adv_test, adv_X_test, adv_clean_Y_test, args=eval_par)
print('Test accuracy on pre-generated adversarial examples of fgsm: %0.4f\n' % acc)
# reload fgsm successfully attacking adv test data
with np.load("adversarial_mnist_test_from_1500.npz") as data:
adv_X_test, adv_clean_Y_test, adv_clean_X_test = data['adv_examples'], data['adv_clean_labels'], data['adv_clean_examples']
print('JSMA adversarial data are successfully reloaded.')
# Evaluate the accuracy of the MNIST model on adversarial examples
acc2 = model_eval(sess, x1, y, preds_adv_test, adv_X_test, adv_clean_Y_test, args=eval_par)
print('Test accuracy on pre-generated adversarial examples of jsma: %0.4f\n' % acc2)
# Close TF session
sess.close()
def main(argv=None):
effective_train_jsma(viz_enabled=FLAGS.viz_enabled,
nb_epochs=FLAGS.nb_epochs,
batch_size=FLAGS.batch_size,
nb_classes=FLAGS.nb_classes,
source_samples=FLAGS.source_samples,
learning_rate=FLAGS.learning_rate)
if __name__ == '__main__':
flags.DEFINE_boolean('viz_enabled', False, 'Visualize adversarial ex.')
flags.DEFINE_integer('nb_epochs', 1, 'Number of epochs to train model')
flags.DEFINE_integer('batch_size', 10, 'Size of training batches')
flags.DEFINE_integer('nb_classes', 10, 'Number of output classes')
flags.DEFINE_integer('source_samples', 10, 'Nb of test inputs to attack')
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
tf.app.run()