-
Notifications
You must be signed in to change notification settings - Fork 16
/
attention.py
240 lines (182 loc) · 8.35 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
"""
PART of the code is from the following link
https://github.com/Diego999/pyGAT/blob/master/layers.py
"""
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm)
return out
class GraphAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha=0.2, concat=True):
super(GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.mm(input, self.W)
N = h.size()[0]
a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features)
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.concat:
return F.elu(h_prime)
else:
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class SpecialSpmmFunction(torch.autograd.Function):
"""Special function for only sparse region backpropataion layer."""
@staticmethod
def forward(ctx, indices, values, shape, b):
assert indices.requires_grad == False
a = torch.sparse_coo_tensor(indices, values, shape)
ctx.save_for_backward(a, b)
ctx.N = shape[0]
return torch.matmul(a, b)
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_values = grad_b = None
if ctx.needs_input_grad[1]:
grad_a_dense = grad_output.matmul(b.t())
edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :]
grad_values = grad_a_dense.view(-1)[edge_idx]
if ctx.needs_input_grad[3]:
grad_b = a.t().matmul(grad_output)
return None, grad_values, None, grad_b
class SpecialSpmm(nn.Module):
def forward(self, indices, values, shape, b):
return SpecialSpmmFunction.apply(indices, values, shape, b)
class SpGraphAttentionLayer(nn.Module):
"""
Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(SpGraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_normal_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(1, 2 * out_features)))
nn.init.xavier_normal_(self.a.data, gain=1.414)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.special_spmm = SpecialSpmm()
def forward(self, input, adj):
dv = 'cuda' if input.is_cuda else 'cpu'
N = input.size()[0]
edge = adj.nonzero().t()
h = torch.mm(input, self.W)
# h: N x out
assert not torch.isnan(h).any()
# Self-attention on the nodes - Shared attention mechanism
edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t()
# edge: 2*D x E
edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze()))
assert not torch.isnan(edge_e).any()
# edge_e: E
e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N, 1), device=dv))
# e_rowsum: N x 1
edge_e = self.dropout(edge_e)
# edge_e: E
h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime = h_prime.div(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
if self.concat:
# if this layer is not last layer,
return F.elu(h_prime)
else:
# if this layer is last layer,
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class IWPA(nn.Module):
"""
Part attention layer, "Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-Identification"
"""
def __init__(self, in_channels, part = 3, inter_channels=None, out_channels=None):
super(IWPA, self).__init__()
self.in_channels = in_channels
self.inter_channels = inter_channels
self.out_channels = out_channels
self.l2norm = Normalize(2)
if self.inter_channels is None:
self.inter_channels = in_channels
if self.out_channels is None:
self.out_channels = in_channels
conv_nd = nn.Conv2d
self.fc1 = nn.Sequential(
conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1,
padding=0),
)
self.fc2 = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.fc3 = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.W = nn.Sequential(
conv_nd(in_channels=self.inter_channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.out_channels),
)
nn.init.constant_(self.W[1].weight, 0.0)
nn.init.constant_(self.W[1].bias, 0.0)
self.bottleneck = nn.BatchNorm1d(in_channels)
self.bottleneck.bias.requires_grad_(False) # no shift
nn.init.normal_(self.bottleneck.weight.data, 1.0, 0.01)
nn.init.zeros_(self.bottleneck.bias.data)
# weighting vector of the part features
self.gate = nn.Parameter(torch.FloatTensor(part))
nn.init.constant_(self.gate, 1/part)
def forward(self, x, feat, t=None, part=0):
bt, c, h, w = x.shape
b = bt // t
# get part features
part_feat = F.adaptive_avg_pool2d(x, (part, 1))
part_feat = part_feat.view(b, t, c, part)
part_feat = part_feat.permute(0, 2, 1, 3) # B, C, T, Part
part_feat1 = self.fc1(part_feat).view(b, self.inter_channels, -1) # B, C//r, T*Part
part_feat1 = part_feat1.permute(0, 2, 1) # B, T*Part, C//r
part_feat2 = self.fc2(part_feat).view(b, self.inter_channels, -1) # B, C//r, T*Part
part_feat3 = self.fc3(part_feat).view(b, self.inter_channels, -1) # B, C//r, T*Part
part_feat3 = part_feat3.permute(0, 2, 1) # B, T*Part, C//r
# get cross-part attention
cpa_att = torch.matmul(part_feat1, part_feat2) # B, T*Part, T*Part
cpa_att = F.softmax(cpa_att, dim=-1)
# collect contextual information
refined_part_feat = torch.matmul(cpa_att, part_feat3) # B, T*Part, C//r
refined_part_feat = refined_part_feat.permute(0, 2, 1).contiguous() # B, C//r, T*Part
refined_part_feat = refined_part_feat.view(b, self.inter_channels, part) # B, C//r, T, Part
gate = F.softmax(self.gate, dim=-1)
weight_part_feat = torch.matmul(refined_part_feat, gate)
x = F.adaptive_avg_pool2d(x, (1, 1))
# weight_part_feat = weight_part_feat + x.view(x.size(0), x.size(1))
weight_part_feat = weight_part_feat + feat
feat = self.bottleneck(weight_part_feat)
return feat