-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
46 lines (39 loc) · 1.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn as nn
import torch.nn.functional as F
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64, fc2_units=64, fc3_units = 64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
fc3_units (int): Number of nodes in third hidden layer
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.bn1 = nn.BatchNorm1d(fc1_units)
self.act1 = nn.ReLU()
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.bn2 = nn.BatchNorm1d(fc2_units)
self.act2 = nn.ReLU()
self.fc3 = nn.Linear(fc2_units, fc3_units)
self.bn3 = nn.BatchNorm1d(fc3_units)
self.act3 = nn.ReLU()
self.fc4 = nn.Linear(fc3_units, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = self.fc1(state)
x = self.act1(x)
x = self.bn1(x)
x = self.fc2(x)
x = self.act2(x)
x = self.bn2(x)
x = self.fc3(x)
x = self.act3(x)
return self.fc4(x)