diff --git a/muon/AnalyseThresholdScans10.py b/muon/AnalyseThresholdScans10.py new file mode 100644 index 0000000..505861c --- /dev/null +++ b/muon/AnalyseThresholdScans10.py @@ -0,0 +1,683 @@ +from mantid.kernel import * +from mantid.api import * +from mantid.simpleapi import * +import math +import numpy +import re +import time + +class AnalyseThresholdScans(PythonAlgorithm): + + timeSetup=0.0 + callsSetup=0 + timeExec=0.0 + callsExec=0 + timeSetPar=0.0 + callsSetPar=0 + + def doChildAlg(self,AlgName,**InputProps): + if isinstance(AlgName,str): + #t1=time.clock() + myalg=AlgorithmManager.create(AlgName) # brand new disposable one + #t2=time.clock() + if(AlgName=="Fit"): + # self.timeSetup += (t2-t1) + self.callsSetup+=1 + else: + myalg=AlgName # given recyclable algorithm + myalg.setChild(True) + priorities=myalg.orderedProperties() + #t1=time.clock() + for pri in priorities: + if(pri in InputProps): + myalg.setProperty(pri,InputProps[pri]) + del InputProps[pri] + myalg.setProperties(InputProps) # rest in any order + #t2=time.clock() + if(AlgName=="Fit"): + #self.timeSetPar += (t2-t1) + self.callsSetPar+=1 + #t1=time.clock() + myalg.execute() + #t2=time.clock() + if(AlgName=="Fit"): + #self.timeExec += (t2-t1) + self.callsExec+=1 + myres={} + for op in myalg.outputProperties(): + myres[op]=myalg.getProperty(op).value + return myres + + def PyInit(self): + # Declare properties + # first and last runs to be loaded as for PlotAsymmetryByLogValue + self.declareProperty(FileProperty("FirstFile","",FileAction.Load, extensions = ["nxs"]),doc="First of a continuous sequence of runs measured at different threshold settings") + self.declareProperty("NumberOfRuns",1000000,doc="Number of runs, default continues until sequence stops. All must have threshold in Comment line") + self.declareProperty(FloatArrayProperty("ThresholdList",direction=Direction.Input),doc="Threshold values if not given in run comments, overrides NumberOfRuns") + self.declareProperty("CoAddDuplicates",True,doc="Co-add runs with the same threshold value to improve stats, for repeated scans") + # use as many files as entries in thresholds list + #self.declareFileProperty("LastFile","",FileAction.Load, Exts = ["nxs"]) + # assume thresholds are set in Comment line "thresholds 123mV" and in increasing order + # self.declareListProperty("Thresholds",[25.0,37.0,50.0,62.0,75.0,87.0,100.0,125.0,150.0],Description="Comma separated list of the thresholds used") + # if TF set to 0 then assume ZF / high LF data + self.declareProperty("TransverseFieldGuess",20.0,doc="Hint for fit, or 0 for ZF/LF non-relaxing data, -1 for integral counts, -2 for rate and chisq") + self.declareProperty("LambdaGuess",0.0,doc="positive to hint at TF lambda, negative to set fixed value") + self.declareProperty("FitDataFrom",0.2,doc="Start time for fit, may need to avoid high count rate distortions. Always fits to end of histograms.") + self.declareProperty("FixMuonLifetime",True,doc="Could allow muon lifetime to vary with uncalibrated TDC and high stats runs") + self.declareProperty("FixBackgroundToZero",True,doc="Could fit background rate (random, light-leak) with high stats only") + self.declareProperty("IndividualPhase",False,doc="Allow phase to vary with threshold as well as between detectors") + self.declareProperty("NoDeadTime",False,doc="Fix dead time to zero, avoid artefacts from non flat backgrounds") + self.declareProperty("Grouped",False,doc="Group detectors before fitting") + self.declareProperty(ITableWorkspaceProperty("GroupingTable","",Direction.Input,PropertyMode.Optional),doc="Alternative grouping table e.g. by ring") + self.declareProperty("BackgroundBefore",999.0,"Time before anything arrives, for background measurement on CHRONUS") + self.declareProperty("BackgroundAfter",999.0,"Time after all muons should have decayed, for background measurement with light leaks") + self.declareProperty("PositronPeakTime",0.0,"Time at which a positron peak may be expected") + self.declareProperty("MinThresholdForSum",0.0,"Exclude thresholds below this for initial summing and fitting TF") + self.declareProperty(WorkspaceProperty("Rates","",Direction.Output),doc="Rates as function of threshold") + self.declareProperty(ITableWorkspaceProperty("ResultTable","",Direction.Output),doc="Positron rates and pulse heights") + self.declareProperty(WorkspaceProperty("Asymmetries","",Direction.Output,PropertyMode.Optional),doc="Asymmetry as function of threshold (TF only)") + self.declareProperty(WorkspaceProperty("Phases","",Direction.Output,PropertyMode.Optional),doc="Phase as function of threshold (TF only)") + self.declareProperty(WorkspaceProperty("DeadTimes","",Direction.Output,PropertyMode.Optional),doc="Apparent dead time as function of threshold") + self.declareProperty(WorkspaceProperty("ChiSquares","",Direction.Output,PropertyMode.Optional),doc="Chi-squared of fit as function of threshold") + self.declareProperty(WorkspaceProperty("Backgrounds","",Direction.Output,PropertyMode.Optional),doc="Background counts as function of threshold") + self.declareProperty(WorkspaceProperty("Positrons","",Direction.Output,PropertyMode.Optional),doc="Positron peak area as function of threshold") + self.declareProperty(FileProperty("IDF","",FileAction.OptionalLoad, extensions = ["xml"]),doc="IDF for the result files, for Instrument View") + + + def category(self): + return 'Muon' + + def PyExec(self): + # Run the algorithm + self.timeSetup=0.0 + self.callsSetup=0 + self.timeExec=0.0 + self.callsExec=0 + self.timeSetPar=0.0 + self.callsSetPar=0 + + + firstfn = self.getProperty('FirstFile').value + i=firstfn.rindex('.') + j=i-1 + while firstfn[j-1].isdigit(): + j=j-1 + firstnum=int(firstfn[j:i]) + k=j-1 + while firstfn[k-1].isalpha(): + k=k-1 + #print "old run number was ",n0 + #voltlist=self.getProperty('Thresholds') + + bguess=self.getProperty('TransverseFieldGuess').value + lamguess=self.getProperty('LambdaGuess').value + nmax=self.getProperty('NumberOfRuns').value + t1=self.getProperty('FitDataFrom').value + fml=self.getProperty('FixMuonLifetime').value + fbz=self.getProperty('FixBackgroundToZero').value + nodt=self.getProperty('NoDeadTime').value + agroup=self.getProperty('Grouped').value + indPhases=self.getProperty("IndividualPhase").value + minsum=self.getProperty("MinThresholdForSum").value + bbefore=self.getProperty("BackgroundBefore").value + bafter=self.getProperty("BackgroundAfter").value + pktime=self.getProperty("PositronPeakTime").value + AddDup=self.getProperty("CoAddDuplicates").value + + thresholdsGiven=self.getProperty("ThresholdList").value + if(len(thresholdsGiven)>0): + nmax=len(thresholdsGiven) + + # first: group all data and fit to get B? take guess provided by user + # then: group across runs and get phase (and freq) for each spectrum + # then: individual fits for bg, asym, deadtime, countrate only. + + # dead time correction and background need high stats to be meaningful + + # allow "muon lifetime" to be variable too if TDC timebase is slightly off + + # progress. Loading phase is 0.1, main fitting 0.85, final analysis 0.05 + # Progress in Load assumes 100 runs unless number given + # awaiting correct way to use this... + #progSoFar= + + # prepare recyclable child algorithms for speed + loadAlg="LoadMuonNexus" # AlgorithmManager.create("LoadMuonNexus") + loadInstAlg=AlgorithmManager.create("LoadInstrument") + groupDetAlg=AlgorithmManager.create("GroupDetectors") + asymAlg=AlgorithmManager.create("AsymmetryCalc") + mgrpAlg=AlgorithmManager.create("MuonGroupDetectors") + # Fit is fussy! + fitAlg="Fit" # AlgorithmManager.create("Fit") + maskAlg=AlgorithmManager.create("MaskDetectors") + plusAlg=AlgorithmManager.create("Plus") + rebunchAlg=AlgorithmManager.create("Rebunch") + + # load the workspaces and add them keeping individuals too + voltlist=[] + runhandles=[] + runnames=[] + vi=0 + oldvolts=-1 + thUnit="mV" # default, can override + sumd=None + while(vi0): + mo=True + volts=thresholdsGiven[vi] + else: + comnt=thisone.getComment() + pat=r"^(?P.*?)(?P[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?)\s*(?P\S*)" + mo=re.search(pat,comnt) + if(mo): + if(mo.group("name")!="" and "thr" not in mo.group("name").lower()): + mo=None + if(mo): + volts=float(mo.group("num")) + if(mo.group("unit") and vi==0): + thUnit=mo.group("unit") # select on 1st only + else: + volts=-1.0 + if(mo and (volts>oldvolts or nmax<1000000) ): + if (volts in voltlist) and AddDup: + k=voltlist.index(volts) + runhandles[k]=self.doChildAlg(plusAlg,LHSWorkspace=runhandles[k],RHSWorkspace=thisone,OutputWorkspace="coadded")["OutputWorkspace"] + runnames[k]=runnames[k]+"+"+thisrunname + self.log().notice("another measurement at "+str(volts)) + else: + voltlist.append(volts) + runnames.append(thisrunname) + runhandles.append(thisone) + self.log().notice("threshold incrementing from "+str(oldvolts)+" to "+str(volts)) + oldvolts=volts + else: + oldvolts=999999 + break + # exclude low threshold runs which might have background + if(volts>=minsum): + if(sumd is None): + sumd=thisone + else: + sumd=self.doChildAlg(plusAlg,LHSWorkspace=sumd,RHSWorkspace=thisone,OutputWorkspace="sumd")["OutputWorkspace"] + #sumd = sumd + thisone # note creates new, not adding into original ws! + vi=vi+1 + + numruns=len(voltlist) + self.log().notice("found sequence of "+str(numruns)+" runs with thresholds between "+str(voltlist[0])+" and "+str(voltlist[-1])+thUnit) + + # sort runs in order of increasing voltage leading to neater plots later + ordering=numpy.argsort(voltlist) + voltlist=[voltlist[ordering[i]] for i in range(len(ordering))] + runnames=[runnames[ordering[i]] for i in range(len(ordering))] + runhandles=[runhandles[ordering[i]] for i in range(len(ordering))] + + # fitting.. + + # loop through spectra + nhtp=sumd.getNumberHistograms() + #nhtp=10 # subset for testing + proc=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # rates + procA=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # Asyms + procB=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # BGs + procD=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # DTs + procP=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # phases, if used + procX=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # chi squared, if used + if(not self.getProperty("Positrons").isDefault): + doPositrons=True + procPos=WorkspaceFactory.create(sumd,NVectors=nhtp,XLength=numruns,YLength=numruns) # phases, if used + self.setProperty("Positrons",procPos) + else: + procPos=None + doPositrons=False + + # output tables and workspaces - give them names so that MaskDetectors, etc will work + self.setProperty("Rates",proc) + if(not self.getProperty("Asymmetries").isDefault): + self.setProperty("Asymmetries",procA) + if(not self.getProperty("Backgrounds").isDefault): + self.setProperty("Backgrounds",procB) + if(not self.getProperty("DeadTimes").isDefault): + self.setProperty("DeadTimes",procD) + if(not self.getProperty("Phases").isDefault): + self.setProperty("Phases",procP) + if(not self.getProperty("ChiSquares").isDefault): + self.setProperty("ChiSquares",procX) + # X axes are thresholds in mv + for w in (proc,procA,procB,procD,procP,procPos,procX): + na=NumericAxis.create(numruns) + for i,v in enumerate(voltlist): + na.setValue(i,v) + lbl=na.setUnit("Label") + lbl.setLabel("Threshold",thUnit) + if(w): + w.replaceAxis(0,na) + proc.setYUnitLabel("Counts per frame") + procA.setYUnitLabel("Asymmetry") + procB.setYUnitLabel("Background counts/s") + procD.setYUnitLabel("Dead time (us)") + procP.setYUnitLabel("Phase (rad)") + procX.setYUnitLabel("Chi squared") + if(doPositrons): + procPos.setYUnitLabel("Positron peak counts/frame") + # IDF already reloaded into raw data and workspaces based on it + #if(not self.getProperty("IDF").isDefault): + # CHRONUS, etc: load alternative IDF. Do now since running this afterwards clears the mask flags! + #for pp in [proc,procA,procB,procD,procP,procPos,procX]: + #if(pp): + #self.doChildAlg("LoadInstrument",Workspace=pp,RewriteSpectraMap=False,Filename=self.getProperty("IDF").value) + #iloader=AlgorithmManager.createUnmanaged("LoadInstrument") + #iloader.setChild(True) # doesn't need a name + #iloader.initialize() + #iloader.setProperty("Workspace", pp) + #iloader.setProperty("RewriteSpectraMap", True) + #iloader.setProperty("Filename", self.getProperty("IDF").value) + #iloader.execute() + # LoadInstrument(Workspace=proc,RewriteSpectraMap=True,Filename=self.getProperty("IDF").value) + + prog=Progress(self,start=0.0,end=1.0,nreports=nhtp) + + # initial fit to summed data to get actual frequency and lambda + if(bguess>0): + if(agroup): + #bulkasym=AsymmetryCalc(sumd,Alpha=1.0) + asyc=self.doChildAlg(asymAlg,InputWorkspace=sumd,Alpha=1.0,ForwardSpectra=[0],BackwardSpectra=[nhtp-1],OutputWorkspace="asyc") + #asyc=AlgorithmManager.create("AsymmetryCalc") + #asyc.setChild(True) + #asyc.setProperty("InputWorkspace",sumd) + #asyc.setProperty("Alpha",1.0) + #asyc.execute + bulkasym=asyc["OutputWorkspace"] + else: + #bulkgrp=MuonGroupDetectors(sumd,dgt) + mgd=self.doChildAlg(mgrpAlg,InputWorkspace=sumd,DetectorGroupingTable=dgt,OutputWorkspace="mgd") + #mgd=AlgorithmManager.create("MuonGroupDetectors") + #mgd.setChild(True) + #mgd.setProperty("InputWorkspace",sumd) + #mgd.setProperty("DetectorGroupingTable",dgt) + #mgd.execute + bulkgrp=mgd["OutputWorkspace"] + #bulkasym=AsymmetryCalc(bulkgrp,Alpha=1.0) + asyc=self.doChildAlg(asymAlg,InputWorkspace=bulkgrp,Alpha=1.0,OutputWorkspace="asyc") + #asyc=AlgorithmManager.create("AsymmetryCalc") + #asyc.setChild(True) + #asyc.setProperty("InputWorkspace",bulkgrp) + #asyc.setProperty("Alpha",1.0) + #asyc.execute + bulkasym=asyc["OutputWorkspace"] + if(lamguess<0): + edo=ExpDecayOsc(A=0.2,Frequency=bguess*0.01355,Phi=0.1,Lambda=-lamguess) + else: + edo=ExpDecayOsc(A=0.2,Frequency=bguess*0.01355,Phi=0.1,Lambda=lamguess) + edo.fix("Lambda") + bulkfunc=edo + FlatBackground(A0=0.0) + #fitalg=AlgorithmManager.create("Fit") + #fitalg.setChild(True) + #fitalg.setProperty("InputWorkspace",bulkasym) + #fitalg.setProperty("Function",bulkfunc) + #fitalg.setProperty("") + fitalg=self.doChildAlg(fitAlg,InputWorkspace=bulkasym,Function=str(bulkfunc),StartX=t1,EndX=t1+12.0,CreateOutput=True,OutputParametersOnly=True,Output="bulk") + #ff=Fit(InputWorkspace=bulkasym,Function=bulkfunc,StartX=t1,EndX=t1+12.0,CreateOutput=True,Output="bulk") + fr=dict([(r["Name"],r["Value"]) for r in fitalg["OutputParameters"]]) + bfitted=fr["f0.Frequency"]*2*math.pi + lamfitted=fr["f0.Lambda"] + phizero=fr["f0.Phi"] + self.log().notice("Fitted frequency "+str(bfitted)+" Mrad/s, lambda "+str(lamfitted)+" us-1") + + for i in range(0,nhtp): + # fit the summed runs first (if TF) + # check for dead detector and mask it + if(numpy.sum(sumd.dataY(i))<1): + for pp in [proc,procA,procB,procD,procP,procPos,procX]: + if(pp): + pp.dataX(i)[:]=voltlist # do need X values! + #self.doChildAlg(maskAlg,Workspace=pp,WorkspaceIndexList=[i]) + #masker = AlgorithmManager.createUnmanaged("MaskDetectors") + #masker.setChild(True) # doesn't need a name + #masker.initialize() + #masker.setProperty("Workspace", pp) + #masker.setProperty("WorkspaceIndexList", [i]) # or the appropriate index + #masker.execute() + + else: + if(bguess>0): + if(not fml) or (not indPhases): # need to fit this histogram, summed, to get the phase and/or tau + if(i+1) in dgt.cell(0,0): # forward detector list + phguess=phizero + else: + phguess=phizero+math.pi + nguess=numpy.amax(sumd.dataY(i)) + #ff=mantid.createAlgorithm("Fit") # had mtd.createAlgorithm + #ff.setPropertyValue("Function","name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*f+p))*exp(-x/tau)+b)+d), n="+str(nguess)+", a=0.2, f="+str(bguess*0.01355*3.14159*2.0)+", p="+str(phguess)+", b=0.01, d=0.001, tau=2.19703") + #ff.setPropertyValue("InputWorkspace","summed") + #ff.setPropertyValue("StartX",str(t1)) + #ff.setPropertyValue("EndX","32") + #ff.setPropertyValue("Output","fitres") + #print "Predicting f=",str(bguess*0.01355*3.14159*2.0)," and p=",str(phguess) + #ff.setPropertyValue("WorkspaceIndex",str(i)) + ties=[] + if(fml): + ties.append("tau=2.19703") + if(fbz): + ties.append("b=0.0") + if (nodt): + ties.append("d=0.0") + dtguess=0.0 + else: + dtguess=0.001 + #ff.execute() + #print "fit function will be '"+"name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+p)*exp(-x*"+str(lamfitted)+"))*exp(-x/tau)+b)+d), n="+str(nguess)+", a=0.2, p="+str(phguess)+", b=0.01, d=0.001, tau=2.19703"+"'" + ff=self.doChildAlg(fitAlg,Function="name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+p)*exp(-x*"+str(lamfitted)+"))*exp(-x/tau)+b)+d), n="+str(nguess)+", a=0.2, p="+str(phguess)+", b=0.01, d="+str(dtguess)+", tau=2.19703", + InputWorkspace=sumd,StartX=t1,EndX=t1+12,CreateOutput=True,OutputParametersOnly=True,Ties=",".join(ties),WorkspaceIndex=i) + #ff=Fit(Function="name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+p)*exp(-x/"+str(lamfitted)+"))*exp(-x/tau)+b)+d), n="+str(nguess)+", a=0.2, p="+str(phguess)+", b=0.01, d=0.001, tau=2.19703", + # InputWorkspace="Summed",StartX=t1,EndX=t1+12,Output="fitresSpec",Ties=",".join(ties),WorkspaceIndex=i) + #for rrr in ff["OutputParameters"]: + # print rrr + fr=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + afitted=fr["a"] + #bfitted=fr["b"] + phfitted=fr["p"] + taufitted=fr["tau"] + if(afitted<0): + phfitted=phfitted+math.pi # correct for phase jumping negative + afitted=-afitted + phfitted=phfitted-2*math.pi*math.floor((phfitted-phizero)/2/math.pi+0.25) # wrap to range -pi/2 .. +3pi/2 with respect to phizero + self.log().notice("hist "+str(i)+" freq="+str(bfitted)+" ampl="+str(afitted)+" phase "+str(phfitted)+"(from "+str(phguess)+") tau="+str(taufitted)) + else: + if(fml): + taufitted=2.19703 + if(i+1) in dgt.cell(0,0): # forward detector list + phguess=phizero + else: + phguess=phizero+math.pi + for vi in range(0,len(voltlist)): + # now fit the individual runs' spectra + #nfst0=runhandles[vi].getSampleDetails().getLogData("ICPEVENT").value + #gfi=nfst0.rfind("GF") + #gfie=nfst0.rfind("RF") + #nframes=int(nfst0[gfi+2:gfie]) + nframes=runhandles[vi].getSampleDetails().getLogData("goodfrm").value + tres=runhandles[vi].readX(i)[2]-runhandles[vi].readX(i)[1] # microseconds + #ff=mtd.createAlgorithm("Fit") + nguess=numpy.amax(runhandles[vi].dataY(i)) + #ff.setPropertyValue("Function","name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+"+str(phfitted)+"))*exp(-x/"+str(taufitted)+")+b)+d), n="+str(nguess)+", a=0.2, b=0.01, d=0.001") + #ff.setPropertyValue("InputWorkspace",runnames[vi]) + #ff.setPropertyValue("WorkspaceIndex",str(i)) + #ff.setPropertyValue("StartX",str(t1)) + #ff.setPropertyValue("EndX","32") + #ff.setPropertyValue("Output","fitres") + + ties=[] + if(fbz): + ties.append("b=0.0") + BfitE=0.0 + # maybe fit background from before t0 and fix it + elif(bbefore<32): + ff=self.doChildAlg(fitAlg,Function=str(FlatBackground()),InputWorkspace=runhandles[vi],WorkspaceIndex=i,StartX=-999.0,EndX=bbefore,CreateOutput=True,OutputParametersOnly=True,CostFunction="Unweighted least squares") + #ff=Fit(Function=FlatBackground(),InputWorkspace=runnames[vi],WorkspaceIndex=i,StartX=-999.0,EndX=bbefore) + frbg=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + febg=dict([(r["Name"],r["Error"]) for r in ff["OutputParameters"]]) + ties.append("b="+str(frbg["A0"])) + BfitE=febg["A0"] + elif(bafter<32): + ff=self.doChildAlg(fitAlg,Function=str(FlatBackground()),InputWorkspace=runhandles[vi],WorkspaceIndex=i,StartX=bafter,EndX=100.0,CreateOutput=True,OutputParametersOnly=True,CostFunction="Unweighted least squares") + #ff=Fit(Function=FlatBackground(),InputWorkspace=runnames[vi],WorkspaceIndex=i,StartX=-999.0,EndX=bbefore) + frbg=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + febg=dict([(r["Name"],r["Error"]) for r in ff["OutputParameters"]]) + ties.append("b="+str(frbg["A0"])) + BfitE=febg["A0"] + if(not indPhases): + ties.append("p="+str(phfitted)) + if (nodt): + ties.append("d=0.0") + dtguess=0.0 + else: + dtguess=0.001 + #ff.execute() + ff=self.doChildAlg(fitAlg,Function="name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+p)*exp(-x*"+str(lamfitted)+"))*exp(-x/"+str(taufitted)+")+b)+d), n="+str(nguess)+", a=0.2, b=0.01, d="+str(dtguess)+", p="+str(phguess), + InputWorkspace=runhandles[vi],WorkspaceIndex=str(i),StartX=str(t1),EndX=32,CreateOutput=True,OutputParametersOnly=True,Ties=",".join(ties)) + #ff=Fit(Function="name=UserFunction, Formula=1/(1/(n*(1+a*cos(x*"+str(bfitted)+"+p)*exp(-x*"+str(lamfitted)+"))*exp(-x/"+str(taufitted)+")+b)+d), n="+str(nguess)+", a=0.2, b=0.01, d=0.001, p="+str(phguess), + # InputWorkspace=runnames[vi],WorkspaceIndex=str(i),StartX=str(t1),EndX=32,Output="fitres",Ties=",".join(ties)) + fr=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + fe=dict([(r["Name"],r["Error"]) for r in ff["OutputParameters"]]) + Nfitted=fr["n"] + NfitE=fe["n"] + Afitted=fr["a"] + AfitE=fe["a"] + Pfitted=fr["p"] + PfitE=fe["p"] + Bfitted=fr["b"] + if not (fbz or bbefore<32 or bafter<32): + BfitE=fe["b"] + Dfitted=fr["d"] + DfitE=fe["d"] + # check phase + if (Afitted<0): + Afitted=-Afitted + Pfitted=Pfitted+math.pi + Pfitted=Pfitted-2*math.pi*math.floor((Pfitted-phizero)/2/math.pi+0.25) # wrap to range -pi/2 .. +3pi/2 + #print "fitted individual run ",vi," to give asym=",Afitted," backgd=",Bfitted," and deadtime=",Dfitted + proc.dataX(i)[vi]=voltlist[vi] + proc.dataY(i)[vi]=Nfitted/nframes/tres # counts/us/frame + proc.dataE(i)[vi]=NfitE/nframes/tres + procA.dataX(i)[vi]=voltlist[vi] + procA.dataY(i)[vi]=Afitted + procA.dataE(i)[vi]=AfitE + procB.dataX(i)[vi]=voltlist[vi] + procB.dataY(i)[vi]=Bfitted/nframes/tres*1.0E6 # units of counts per second + procB.dataE(i)[vi]=BfitE/nframes/tres*1.0E6 + procD.dataX(i)[vi]=voltlist[vi] + procD.dataY(i)[vi]=Dfitted*nframes*tres # dead time in microseconds + procD.dataE(i)[vi]=DfitE*nframes*tres + procP.dataX(i)[vi]=voltlist[vi] + procP.dataY(i)[vi]=Pfitted + procP.dataE(i)[vi]=PfitE + procX.dataX(i)[vi]=voltlist[vi] + procX.dataY(i)[vi]=fr["Cost function value"] + procX.dataE(i)[vi]=0 + # and also fit the positron peak (fixed position/width Gaussian) + if(doPositrons): + ff=self.doChildAlg(fitAlg,Function=str(FlatBackground()),InputWorkspace=runhandles[vi],WorkspaceIndex=i,StartX=pktime-0.05,EndX=pktime+0.05,CreateOutput=True,OutputParametersOnly=True) + #ff=Fit(Function=FlatBackground(),InputWorkspace=runnames[vi],WorkspaceIndex=i,StartX=pktime-0.05,EndX=pktime+0.05,CreateOutput=True,Output="posfit") + pfr=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + pfe=dict([(r["Name"],r["Error"]) for r in ff["OutputParameters"]]) + procPos.dataX(i)[vi]=voltlist[vi] + procPos.dataY(i)[vi]=(pfr["A0"]-fr["b"])/nframes # counts/bin/frame + procPos.dataE(i)[vi]=pfe["A0"]/nframes # assume BG error is small by comparison + + #print "finished fitting spectrum ",i + elif (bguess==0): + for vi in range(0,len(voltlist)): + nframes=runhandles[vi].getSampleDetails().getLogData("goodfrm").value + tres=runhandles[vi].readX(i)[2]-runhandles[vi].readX(i)[1] # microseconds + #ff=mtd.createAlgorithm("Fit") + nguess=numpy.amax(runhandles[vi].dataY(i)) + #ff.setPropertyValue("Function","name=UserFunction, Formula=1/(1/(n*exp(-x/tau)+b)+d), n="+str(nguess)+", b=0.01, d=0.001, tau=2.19703") + #ff.setPropertyValue("InputWorkspace",runnames[vi]) + #ff.setPropertyValue("WorkspaceIndex",str(i)) + #ff.setPropertyValue("StartX",str(t1)) + #ff.setPropertyValue("EndX","32") + #ff.setPropertyValue("Output","fitres") + ties=[] + if(fml): + ties.append("tau=2.19703") + if(fbz): + ties.append("b=0.0") + if (nodt): + ties.append("d=0.0") + dtguess=0.0 + else: + dtguess=0.001 + #ff.execute() + ff=self.doChildAlg(fitAlg,Function="name=UserFunction, Formula=1/(1/(n*exp(-x/tau)+b)+d), n="+str(nguess)+", b=0.01, d="+str(dtguess)+", tau=2.19703", + InputWorkspace=runhandles[vi],WorkspaceIndex=str(i),StartX=str(t1),EndX=32,CreateOutput=True,OutputParametersOnly=True,Ties=",".join(ties)) + #ff=Fit(Function="name=UserFunction, Formula=1/(1/(n*exp(-x/tau)+b)+d), n="+str(nguess)+", b=0.01, d=0.001, tau=2.19703", + # InputWorkspace=runnames[vi],WorkspaceIndex=str(i),StartX=str(t1),EndX=32,Output="fitres",Ties=",".join(ties)) + fr=ff["OutputParameters"] # mtd["fitres_Parameters"] + Nfitted=fr.cell("Value",0) + NfitE=fr.cell("Error",0) + Bfitted=fr.cell("Value",2) + BfitE=fr.cell("Error",2) + Dfitted=fr.cell("Value",3) + DfitE=fr.cell("Error",3) + #print "fitted individual run ",vi," to give asym=",Afitted," backgd=",Bfitted," and deadtime=",Dfitted + proc.dataX(i)[vi]=voltlist[vi] + proc.dataY(i)[vi]=Nfitted/nframes/tres # counts/us/frame + proc.dataE(i)[vi]=NfitE/nframes/tres + procA.dataX(i)[vi]=voltlist[vi] + procA.dataY(i)[vi]=0.0 # no asym possible for LF/ZF runs + procA.dataE(i)[vi]=0.0 + procB.dataX(i)[vi]=voltlist[vi] + procB.dataY(i)[vi]=Bfitted/nframes/tres*1.0E6 # units of counts per second + procB.dataE(i)[vi]=BfitE/nframes/tres*1.0E6 + procD.dataX(i)[vi]=voltlist[vi] + procD.dataY(i)[vi]=Dfitted*nframes*tres # dead time in microseconds + procD.dataE(i)[vi]=DfitE*nframes*tres + procX.dataX(i)[vi]=voltlist[vi] + procX.dataY(i)[vi]=fr.cell("Value",4) + procX.dataE(i)[vi]=0 + elif (bguess==-2): + for vi in range(0,len(voltlist)): + nframes=runhandles[vi].getSampleDetails().getLogData("goodfrm").value + tres=runhandles[vi].readX(i)[2]-runhandles[vi].readX(i)[1] # microseconds + #ff=mtd.createAlgorithm("Fit") + nguess=numpy.amax(runhandles[vi].dataY(i)) + #ff.setPropertyValue("Function","name=UserFunction, Formula=1/(1/(n*exp(-x/tau)+b)+d), n="+str(nguess)+", b=0.01, d=0.001, tau=2.19703") + #ff.setPropertyValue("InputWorkspace",runnames[vi]) + #ff.setPropertyValue("WorkspaceIndex",str(i)) + #ff.setPropertyValue("StartX",str(t1)) + #ff.setPropertyValue("EndX","32") + #ff.setPropertyValue("Output","fitres") + #ff.execute() + ff=self.doChildAlg(fitAlg,Function="name=Chebyshev,n=10,StartX="+str(t1)+",EndX="+str(t1+4), + InputWorkspace=runhandles[vi],WorkspaceIndex=str(i),StartX=t1,EndX=t1+4,CreateOutput=True,OutputParametersOnly=True) + #ff=Fit(Function="name=UserFunction, Formula=1/(1/(n*exp(-x/tau)+b)+d), n="+str(nguess)+", b=0.01, d=0.001, tau=2.19703", + # InputWorkspace=runnames[vi],WorkspaceIndex=str(i),StartX=str(t1),EndX=32,Output="fitres",Ties=",".join(ties)) + fr=dict([(r["Name"],r["Value"]) for r in ff["OutputParameters"]]) + fe=dict([(r["Name"],r["Error"]) for r in ff["OutputParameters"]]) + proc.dataX(i)[vi]=voltlist[vi] + proc.dataY(i)[vi]=fr["A0"]/nframes/tres # counts/us/frame, mean including any BG + proc.dataE(i)[vi]=fe["A0"]/nframes/tres + procA.dataX(i)[vi]=voltlist[vi] + procA.dataY(i)[vi]=0.0 # no asym possible for LF/ZF runs + procA.dataE(i)[vi]=0.0 + procB.dataX(i)[vi]=voltlist[vi] + procB.dataY(i)[vi]=0.0 + procB.dataE(i)[vi]=0.0 + procD.dataX(i)[vi]=voltlist[vi] + procD.dataY(i)[vi]=0.0 + procD.dataE(i)[vi]=0.0 + procX.dataX(i)[vi]=voltlist[vi] + procX.dataY(i)[vi]=fr["Cost function value"] + procX.dataE(i)[vi]=0 + else: + # integral counts only + for vi in range(0,len(voltlist)): + nframes=runhandles[vi].getSampleDetails().getLogData("goodfrm").value + tres=runhandles[vi].readX(i)[2]-runhandles[vi].readX(i)[1] # microseconds. Not needed for integral? + sum=0 + hx=runhandles[vi].readX(i) + hy=runhandles[vi].readY(i) + for tt in range(len(hy)): + if(hx[tt+1]>t1): + sum=sum+hy[tt] + # integral from t1 only + # true total counts per microsecond at t=0 is sum*exp(t1/tau)/tau + proc.dataX(i)[vi]=voltlist[vi] + proc.dataY(i)[vi]=sum*math.exp(t1/2.19703)/2.19703/nframes # counts/us/frame + proc.dataE(i)[vi]=math.sqrt(sum)*math.exp(t1/2.19703)/2.19703/nframes + procA.dataX(i)[vi]=voltlist[vi] + procA.dataY(i)[vi]=0.0 # no asym possible for LF/ZF runs + procA.dataE(i)[vi]=0.0 + procB.dataX(i)[vi]=voltlist[vi] + procB.dataY(i)[vi]=0.0 # BG not fitted + procB.dataE(i)[vi]=0.0 + procD.dataX(i)[vi]=voltlist[vi] + procD.dataY(i)[vi]=0.0 # deadtime not fitted + procD.dataE(i)[vi]=0.0 + prog.report() + + resw=WorkspaceFactory.createTable() + resw.addColumn("int","Spectrum",1) + resw.addColumn("double","CountsPerFrame",2) + resw.addColumn("double","ErrCPF",5) + resw.addColumn("double","PulseHeight",2) + resw.addColumn("double","ErrPH",5) + resw.addColumn("double","ChiSq",2) + self.setProperty("ResultTable",resw) + # fit N versus volts to erf() or something similar + # omit <25mV point2 from fit as it may have noise as well as positrons + # though if voltlist range is all <25 then assume relative (CHRONUS) and fit everything + if(voltlist[-1]>50): + x0=24.0 + else: + x0=0.0 + for i in range(0,nhtp): + #self.progress(0.95+0.05*i/proc.getNumberHistograms()) + #ff=mtd.createAlgorithm("Fit") + #ff.setPropertyValue("Function","name=UserFunction, Formula=rate/(1+exp(x/lam - 2.75)), rate=5.0, lam=20.0") + #ff.setPropertyValue("InputWorkspace","rates") + #ff.setPropertyValue("StartX","24.0") + #ff.setPropertyValue("EndX","999.0") + #ff.setPropertyValue("Output","fitres") + #ff.setPropertyValue("Ties","PeakCentre=0.0") + #ff.setPropertyValue("WorkspaceIndex",str(i)) + #ff.execute() + + #print "voltlist is",voltlist + #print "runnames in order are ",runnames + #print "Start X for fit is ",x0 + #print "x values of data set are",proc.dataX(i) + if (not numpy.all(numpy.isfinite(proc.dataX(i))) ) or (not numpy.all(numpy.isfinite(proc.dataY(i))) ) or (not numpy.all(numpy.isfinite(proc.dataE(i))) ): + self.log().warning("about to fit model to spectrum "+str(i)) + self.log().warning("proc.dataX="+str(proc.dataX(i))) + self.log().warning("proc.dataY="+str(proc.dataY(i))) + self.log().warning("proc.dataE="+str(proc.dataE(i))) + print ("Bad data in histogram",i,"Will crash Fit...") + else: + ff=self.doChildAlg(fitAlg,Function="name=UserFunction, Formula=rate/(1+exp(x/lam - 2.75)), rate=5.0, lam=20.0",InputWorkspace=proc,StartX=x0,EndX="999.0",CreateOutput=True,OutputParametersOnly=True,WorkspaceIndex=str(i)) + #ff=Fit(Function="name=UserFunction, Formula=rate/(1+exp(x/lam - 2.75)), rate=5.0, lam=20.0",InputWorkspace=proc,StartX=x0,EndX="999.0",Output="fitModel",WorkspaceIndex=str(i)) + fr=ff["OutputParameters"] # mtd["fitres_Parameters"] + resw.addRow((i,fr.cell("Value",0),fr.cell("Error",0),fr.cell("Value",1),fr.cell("Error",1),fr.cell("Value",2))) + + # output workspaces already set... + if(self.callsSetup>0): + self.log().notice("created "+str(self.callsSetup)+" new Fits, "+str(self.timeSetup/self.callsSetup)+" seconds each") + else: + self.log().notice("Don't seem to have created any Fit algorithms") + if(self.callsSetPar>0): + self.log().notice("set Fit properties "+str(self.callsSetPar)+" times, "+str(self.timeSetPar/self.callsSetPar)+" seconds each batch") + if(self.callsExec>0): + self.log().notice("executed Fit "+str(self.callsExec)+" times, "+str(self.timeExec/self.callsExec)+" seconds each") + +AlgorithmFactory.subscribe(AnalyseThresholdScans)