Skip to content

Latest commit

 

History

History
113 lines (78 loc) · 10.3 KB

References.md

File metadata and controls

113 lines (78 loc) · 10.3 KB

Development of ADDA is mostly performed in the framework of scientific projects. In the following, a list of publications, relevant to different parts of ADDA, is presented. Although the manual provides a brief description of all ADDA functionality, we recommend citing the original papers listed below (containing more details) when you use the corresponding functions of ADDA. Please cite the manual only for those parts which are not published elsewhere.

General description

M. A. Yurkin and A. G. Hoekstra,“The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. 112, 2234–2247 (2011).

Specific aspects

OpenCL (GPU-accelerated) version

M. Huntemann, G. Heygster, and G. Hong, “Discrete dipole approximation simulations on GPUs using OpenCL - Application on cloud ice particles,” J. Comput. Sci. 2, 262–271 (2011).

Sparse (non-FFT) mode

J. Leinonen, D. Moisseev, and T. Nousiainen, “Linking snowflake microstructure to multi-frequency radar observations,” J. Geophys. Res.: Atmos. 118, 3259–3270 (2013).

Different implemented DDA formulations

Filtered coupled dipoles (FCD)

Integration of Green's tensor (IGT)

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

Particles much larger than the wavelength

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).

Gold nanoparticles

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).

Surface mode

  • (2D-FFT implementation) R. Schmehl, B. M. Nebeker, and E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026–3036 (1997).
  • (full 3D-FFT acceleration) to be published.

Shapes

Axisymmetric

K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express 18, 5681–5690 (2010).

Bisphere

K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).

Capsule

D. V. Hahn, D. Limsui, R. I. Joseph, K. C. Baldwin, N. T. Boggs, A. K. Carr, C. C. Carter, T. S. Han, and M. E. Thomas, “Shape characteristics of biological spores,” SPIE Proc. 6954, 69540W (2008).

Сhebyshev particle

K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).

Coated spheres

J. Tyynelä, T. Nousiainen, S. Göke, and K. Muinonen, “Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110, 1654–1664 (2009).

Cylinder

Cube (box)

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

Egg

D. V. Hahn, D. Limsui, R. I. Joseph, K. C. Baldwin, N. T. Boggs, A. K. Carr, C. C. Carter, T. S. Han, and M. E. Thomas, “Shape characteristics of biological spores,” SPIE Proc. 6954, 69540W (2008).

Ellipsoid

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).

Red blood cell (RBC)

M. A. Yurkin, “Discrete dipole simulations of light scattering by blood cells,” PhD thesis, University of Amsterdam (2007).

Granule generator

M. A. Yurkin, K. A. Semyanov, V. P. Maltsev, and A. G. Hoekstra, “Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model,” Opt. Express 15, 16561–16580 (2007).

Calculated quantities

Radiation forces

A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001).

Internal fields

A. G. Hoekstra, J. Rahola, and P. M. A. Sloot, “Accuracy of internal fields in volume integral equation simulations of light scattering,” Appl. Opt. 37, 8482–8497 (1998).

Mueller matrix integrated over the azimuthal angle

M. A. Yurkin, “Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle,” J. Quant. Spectrosc. Radiat. Transfer 131, 82–87 (2013).

Decay rate (emission) enhancement

S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole decay rates engineering via silver nanocones,” Plasmonics 8, 1079–1086 (2013).

Comparisons

with other DDA codes

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).

with other light-scattering methods

  • M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
  • K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express 18, 5681–5690 (2010).
  • C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
  • M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

Additional packages

hyperfun

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar-relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).

near_field

S. D'Agostino, P. P. Pompa, R. Chiuri, R. J. Phaneuf, D. G. Britti, R. Rinaldi, R. Cingolani, and F. Della Sala, “Enhanced fluorescence by metal nanospheres on metal substrates,” Opt. Lett. 34, 2381–2383 (2009).

pip

R. Schuh, “Arbitrary particle shape modeling in DDSCAT and validation of simulation results,” in Proceedings of the DDA-Workshop, T. Wriedt and A. G. Hoekstra, Eds., pp. 22–24, Bremen, Germany (2007).

General DDA theory

Review of the DDA theory

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

Convergence of the DDA

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).

Extrapolation technique

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23, 2592–2601 (2006).

Symmetry tests for the DDA results

K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).