Development of ADDA
is mostly performed in the framework of scientific projects. In the following, a list of publications, relevant to different parts of ADDA
, is presented. Although the manual provides a brief description of all ADDA
functionality, we recommend citing the original papers listed below (containing more details) when you use the corresponding functions of ADDA
. Please cite the manual only for those parts which are not published elsewhere.
M. A. Yurkin and A. G. Hoekstra,“The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. 112, 2234–2247 (2011).
M. Huntemann, G. Heygster, and G. Hong, “Discrete dipole approximation simulations on GPUs using OpenCL - Application on cloud ice particles,” J. Comput. Sci. 2, 262–271 (2011).
J. Leinonen, D. Moisseev, and T. Nousiainen, “Linking snowflake microstructure to multi-frequency radar observations,” J. Geophys. Res.: Atmos. 118, 3259–3270 (2013).
- N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: A spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).
- M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).
M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).
M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
- (2D-FFT implementation) R. Schmehl, B. M. Nebeker, and E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026–3036 (1997).
- (full 3D-FFT acceleration) to be published.
K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express 18, 5681–5690 (2010).
K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).
D. V. Hahn, D. Limsui, R. I. Joseph, K. C. Baldwin, N. T. Boggs, A. K. Carr, C. C. Carter, T. S. Han, and M. E. Thomas, “Shape characteristics of biological spores,” SPIE Proc. 6954, 69540W (2008).
K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).
J. Tyynelä, T. Nousiainen, S. Göke, and K. Muinonen, “Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 110, 1654–1664 (2009).
- K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).
- L. Bi, P. Yang, and G. W. Kattawar, “Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles,” Appl. Opt. 49, 4641–4646 (2010).
M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).
D. V. Hahn, D. Limsui, R. I. Joseph, K. C. Baldwin, N. T. Boggs, A. K. Carr, C. C. Carter, T. S. Han, and M. E. Thomas, “Shape characteristics of biological spores,” SPIE Proc. 6954, 69540W (2008).
L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009).
M. A. Yurkin, “Discrete dipole simulations of light scattering by blood cells,” PhD thesis, University of Amsterdam (2007).
M. A. Yurkin, K. A. Semyanov, V. P. Maltsev, and A. G. Hoekstra, “Discrimination of granulocyte subtypes from light scattering: theoretical analysis using a granulated sphere model,” Opt. Express 15, 16561–16580 (2007).
A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001).
A. G. Hoekstra, J. Rahola, and P. M. A. Sloot, “Accuracy of internal fields in volume integral equation simulations of light scattering,” Appl. Opt. 37, 8482–8497 (1998).
M. A. Yurkin, “Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle,” J. Quant. Spectrosc. Radiat. Transfer 131, 82–87 (2013).
S. D’Agostino, F. D. Sala, and L. C. Andreani, “Dipole decay rates engineering via silver nanocones,” Plasmonics 8, 1079–1086 (2013).
A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
- M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
- K. V. Gilev, E. Eremina, M. A. Yurkin, and V. P. Maltsev, “Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells,” Opt. Express 18, 5681–5690 (2010).
- C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
- M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).
J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar-relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
S. D'Agostino, P. P. Pompa, R. Chiuri, R. J. Phaneuf, D. G. Britti, R. Rinaldi, R. Cingolani, and F. Della Sala, “Enhanced fluorescence by metal nanospheres on metal substrates,” Opt. Lett. 34, 2381–2383 (2009).
R. Schuh, “Arbitrary particle shape modeling in DDSCAT and validation of simulation results,” in Proceedings of the DDA-Workshop, T. Wriedt and A. G. Hoekstra, Eds., pp. 22–24, Bremen, Germany (2007).
M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23, 2578–2591 (2006).
M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23, 2592–2601 (2006).
K. Schmidt, M. A. Yurkin, and M. Kahnert, “A case study on the reciprocity in light scattering computations,” Opt. Express 20, 23253–23274 (2012).