forked from dmitropolsky/assemblies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulations.py
450 lines (409 loc) · 14.2 KB
/
simulations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Default simulation library containing:
# - Basic projection simulations (convergence for different beta, etc)
# - Merge simulations (different betas)
# - Pattern completion simulations
# - Association simulations
# - simulations studying density in assemblies (higher than ambient p)
# Also contains methods for plotting saved results from some of these simulations
# (for figures).
import brain
import brain_util as bu
import numpy as np
import random
import copy
import pickle
import matplotlib.pyplot as plt
from collections import OrderedDict
def project_sim(n=1000000,k=1000,p=0.01,beta=0.05,t=50):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(t-1):
b.project({"stim":["A"]},{"A":["A"]})
return b.areas["A"].saved_w
def project_beta_sim(n=100000,k=317,p=0.01,t=100):
results = {}
for beta in [0.25,0.1,0.075,0.05,0.03,0.01,0.007,0.005,0.003,0.001]:
print "Working on " + str(beta) + "\n"
out = project_sim(n,k,p,beta,t)
results[beta] = out
return results
def assembly_only_sim(n=100000,k=317,p=0.05,beta=0.05,project_iter=10):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(project_iter-1):
b.project({"stim":["A"]},{"A":["A"]})
for i in xrange(5):
b.project({},{"A":["A"]})
return b.areas["A"].saved_w
# alpha = percentage of (random) final assembly neurons to try firing
def pattern_com(n=100000,k=317,p=0.05,beta=0.05,project_iter=10,alpha=0.5,comp_iter=1):
b = brain.Brain(p,save_winners=True)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(project_iter-1):
b.project({"stim":["A"]},{"A":["A"]})
# pick random subset of the neurons to fire
subsample_size = int(k*alpha)
subsample = random.sample(b.areas["A"].winners, subsample_size)
b.areas["A"].winners = subsample
for i in xrange(comp_iter):
b.project({},{"A":["A"]})
return b.areas["A"].saved_w,b.areas["A"].saved_winners
def pattern_com_repeated(n=100000,k=317,p=0.05,beta=0.05,project_iter=12,alpha=0.4,
trials=3, max_recurrent_iter=10, resample=False):
b = brain.Brain(p,save_winners=True)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(project_iter-1):
b.project({"stim":["A"]},{"A":["A"]})
subsample_size = int(k*alpha)
rounds_to_completion = []
# pick random subset of the neurons to fire
subsample = random.sample(b.areas["A"].winners, subsample_size)
for trail in xrange(trials):
if resample:
subsample = random.sample(b.areas["A"].winners, subsample_size)
b.areas["A"].winners = subsample
rounds = 0
while True:
rounds += 1
b.project({},{"A":["A"]})
if (b.areas["A"].num_first_winners == 0) or (rounds == max_recurrent_iter):
break
rounds_to_completion.append(rounds)
saved_winners = b.areas["A"].saved_winners
overlaps = bu.get_overlaps(saved_winners,project_iter-1,percentage=True)
return overlaps, rounds_to_completion
def pattern_com_alphas(n=100000,k=317,p=0.01,beta=0.05,
alphas=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0],project_iter=25,comp_iter=5):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(project_iter-1):
b.project({"stim":["A"]},{"A":["A"]})
results = {}
A_winners = b.areas["A"].winners
for alpha in alphas:
# pick random subset of the neurons to fire
subsample_size = int(k*alpha)
b_copy = copy.deepcopy(b)
subsample = random.sample(b_copy.areas["A"].winners, subsample_size)
b_copy.areas["A"].winners = subsample
for i in xrange(comp_iter):
b_copy.project({},{"A":["A"]})
final_winners = b_copy.areas["A"].winners
o = bu.overlap(final_winners, A_winners)
results[alpha] = float(o)/float(k)
return results
def pattern_com_iterations(n=100000,k=317,p=0.01,beta=0.05,alpha=0.4,comp_iter=8,
min_iter=20,max_iter=30):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(min_iter-2):
b.project({"stim":["A"]},{"A":["A"]})
results = {}
subsample_size = int(k*alpha)
subsample = random.sample(b.areas["A"].winners, subsample_size)
for i in xrange(min_iter,max_iter+1):
b.project({"stim":["A"]},{"A":["A"]})
b_copy = copy.deepcopy(b)
b_copy.areas["A"].winners = subsample
for j in xrange(comp_iter):
b_copy.project({},{"A":["A"]})
o = bu.overlap(b_copy.areas["A"].winners, b.areas["A"].winners)
results[i] = float(o)/float(k)
return results
# Sample command c_w,c_winners = bu.association_sim()
def associate(n=100000,k=317,p=0.05,beta=0.1,overlap_iter=10):
b = brain.Brain(p,save_winners=True)
b.add_stimulus("stimA",k)
b.add_area("A",n,k,beta)
b.add_stimulus("stimB",k)
b.add_area("B",n,k,beta)
b.add_area("C",n,k,beta)
b.project({"stimA":["A"],"stimB":["B"]},{})
# Create assemblies A and B to stability
for i in xrange(9):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A"],"B":["B"]})
b.project({"stimA":["A"]},{"A":["A","C"]})
# Project A->C
for i in xrange(9):
b.project({"stimA":["A"]},
{"A":["A","C"],"C":["C"]})
# Project B->C
b.project({"stimB":["B"]},{"B":["B","C"]})
for i in xrange(9):
b.project({"stimB":["B"]},
{"B":["B","C"],"C":["C"]})
# Project both A,B to C
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"]})
for i in xrange(overlap_iter-1):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"],"C":["C"]})
# Project just B
b.project({"stimB":["B"]},{"B":["B","C"]})
for i in xrange(9):
b.project({"stimB":["B"]},{"B":["B","C"],"C":["C"]})
return b
def association_sim(n=100000,k=317,p=0.05,beta=0.1,overlap_iter=10):
b = associate(n,k,p,beta,overlap_iter)
return b.areas["C"].saved_w,b.areas["C"].saved_winners
def association_grand_sim(n=100000,k=317,p=0.01,beta=0.05,min_iter=10,max_iter=20):
b = brain.Brain(p,save_winners=True)
b.add_stimulus("stimA",k)
b.add_area("A",n,k,beta)
b.add_stimulus("stimB",k)
b.add_area("B",n,k,beta)
b.add_area("C",n,k,beta)
b.project({"stimA":["A"],"stimB":["B"]},{})
# Create assemblies A and B to stability
for i in xrange(9):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A"],"B":["B"]})
b.project({"stimA":["A"]},{"A":["A","C"]})
# Project A->C
for i in xrange(9):
b.project({"stimA":["A"]},
{"A":["A","C"],"C":["C"]})
# Project B->C
b.project({"stimB":["B"]},{"B":["B","C"]})
for i in xrange(9):
b.project({"stimB":["B"]},
{"B":["B","C"],"C":["C"]})
# Project both A,B to C
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"]})
for i in xrange(min_iter-2):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"],"C":["C"]})
results = {}
for i in xrange(min_iter,max_iter+1):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"],"C":["C"]})
b_copy1 = copy.deepcopy(b)
b_copy2 = copy.deepcopy(b)
# in copy 1, project just A
b_copy1.project({"stimA":["A"]},{})
b_copy1.project({},{"A":["C"]})
# in copy 2, project just B
b_copy2.project({"stimB":["B"]},{})
b_copy2.project({},{"B":["C"]})
o = bu.overlap(b_copy1.areas["C"].winners, b_copy2.areas["C"].winners)
results[i] = float(o)/float(k)
return results
def merge_sim(n=100000,k=317,p=0.01,beta=0.05,max_t=50):
b = brain.Brain(p)
b.add_stimulus("stimA",k)
b.add_stimulus("stimB",k)
b.add_area("A",n,k,beta)
b.add_area("B",n,k,beta)
b.add_area("C",n,k,beta)
b.project({"stimA":["A"]},{})
b.project({"stimB":["B"]},{})
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"]})
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"],"C":["C","A","B"]})
for i in xrange(max_t-1):
b.project({"stimA":["A"],"stimB":["B"]},
{"A":["A","C"],"B":["B","C"],"C":["C","A","B"]})
return b.areas["A"].saved_w, b.areas["B"].saved_w, b.areas["C"].saved_w
def merge_beta_sim(n=100000,k=317,p=0.01,t=100):
results = {}
for beta in [0.3,0.2,0.1,0.075,0.05]:
print "Working on " + str(beta) + "\n"
out = merge_sim(n,k,p,beta=beta,max_t=t)
results[beta] = out
return results
# UTILS FOR EVAL
def plot_project_sim(show=True, save="", show_legend=False, use_text_font=True):
results = bu.sim_load('project_results')
# fonts
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
# 0.05 and 0.07 overlap almost exactly, pop 0.07
results.pop(0.007)
od = OrderedDict(sorted(results.items()))
x = np.arange(100)
print(x)
for key,val in od.iteritems():
plt.plot(x,val,linewidth=0.7)
if show_legend:
plt.legend(od.keys(), loc='upper left')
ax = plt.axes()
ax.set_xticks([0,10,20,50,100])
k = 317
plt.yticks([k,2*k,5*k,10*k,13*k],["k","2k","5k","10k","13k"])
plt.xlabel(r'$t$')
if not show_legend:
for line, name in zip(ax.lines, od.keys()):
y = line.get_ydata()[-1]
ax.annotate(name, xy=(1,y), xytext=(6,0), color=line.get_color(),
xycoords = ax.get_yaxis_transform(), textcoords="offset points",
size=10, va="center")
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
def plot_merge_sim(show=True, save="", show_legend=False, use_text_font=True):
results = bu.sim_load('merge_betas')
# fonts
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
od = OrderedDict(sorted(results.items()))
x = np.arange(101)
for key,val in od.iteritems():
plt.plot(x,val,linewidth=0.7)
if show_legend:
plt.legend(od.keys(), loc='upper left')
ax = plt.axes()
ax.set_xticks([0,10,20,50,100])
k = 317
plt.yticks([k,2*k,5*k,10*k,13*k],["k","2k","5k","10k","13k"])
plt.xlabel(r'$t$')
if not show_legend:
for line, name in zip(ax.lines, od.keys()):
y = line.get_ydata()[-1]
ax.annotate(name, xy=(1,y), xytext=(6,0), color=line.get_color(),
xycoords = ax.get_yaxis_transform(), textcoords="offset points",
size=10, va="center")
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
def plot_association(show=True, save="", use_text_font=True):
results = bu.sim_load('association_results')
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
od = OrderedDict(sorted(results.items()))
plt.plot(od.keys(),od.values(),linewidth=0.7)
ax = plt.axes()
plt.yticks([0.1,0.2,0.3,0.4,0.5],["10%","20%","30%","40%","50%"])
plt.xlabel(r'$t$')
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
def plot_pattern_com(show=True, save="", use_text_font=True):
results = bu.sim_load('pattern_com_iterations')
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
od = OrderedDict(sorted(results.items()))
plt.plot(od.keys(),od.values(),linewidth=0.7)
ax = plt.axes()
plt.yticks([0,0.25,0.5,0.75,1],["0%","25%","50%","75%","100%"])
plt.xlabel(r'$t$')
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
def plot_overlap(show=True, save="", use_text_font=True):
results = bu.sim_load('overlap_results')
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
od = OrderedDict(sorted(results.items()))
plt.plot(od.keys(),od.values(),linewidth=0.7)
ax = plt.axes()
plt.xticks([0,0.2,0.4,0.6,0.8],["","20%","40%","60%","80%"])
plt.xlabel('overlap (assemblies)')
plt.yticks([0,0.05,0.1,0.15,0.2,0.25,0.3],["","5%","10%","15%","20%","25%","30%"])
plt.ylabel('overlap (projections)')
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
def density(n=100000,k=317,p=0.01,beta=0.05):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(9):
b.project({"stim":["A"]},{"A":["A"]})
conn = b.connectomes["A"]["A"]
final_winners = b.areas["A"].winners
edges = 0
for i in final_winners:
for j in final_winners:
if conn[i][j] != 0:
edges += 1
return float(edges)/float(k**2)
def density_sim(n=100000,k=317,p=0.01,beta_values=[0,0.025,0.05,0.075,0.1]):
results = {}
for beta in beta_values:
print "Working on " + str(beta) + "\n"
out = density(n,k,p,beta)
results[beta] = out
return results
def plot_density_ee(show=True,save="",use_text_font=True):
if(use_text_font):
plt.rcParams['mathtext.fontset'] = 'stix'
plt.rcParams['font.family'] = 'STIXGeneral'
od = bu.sim_load('density_results')
plt.xlabel(r'$\beta$')
plt.ylabel(r'assembly $p$')
plt.plot(od.keys(),od.values(),linewidth=0.7)
plt.plot([0,0.06],[0.01,0.01],color='red',linestyle='dashed',linewidth=0.7)
if show:
plt.show()
if not show and save != "":
plt.savefig(save)
# For default values, first B->A gets only 25% of A's original assembly
# After subsequent recurrent firings restore up to 42%
# With artificially high beta, can get 100% restoration.
def fixed_assembly_recip_proj(n=100000, k=317, p=0.01, beta=0.05):
b = brain.Brain(p, save_winners=True)
b.add_stimulus("stimA",k)
b.add_area("A",n,k,beta)
# Will project fixes A into B
b.add_area("B",n,k,beta)
b.project({"stimA":["A"]},{})
print("A.w=" + str(b.areas["A"].w))
for i in xrange(20):
b.project({"stimA":["A"]}, {"A":["A"]})
print("A.w=" + str(b.areas["A"].w))
# Freeze assembly in A and start projecting A <-> B
b.areas["A"].fix_assembly()
b.project({}, {"A":["B"]})
for i in xrange(20):
b.project({}, {"A":["B"], "B":["A","B"]})
print("B.w=" + str(b.areas["B"].w))
# If B has stabilized, this implies that the A->B direction is stable.
# Therefore to test that this "worked" we should check that B->A restores A
print("Before B->A, A.w=" + str(b.areas["A"].w))
b.areas["A"].unfix_assembly()
b.project({},{"B":["A"]})
print("After B->A, A.w=" + str(b.areas["A"].w))
for i in xrange(20):
b.project({}, {"B":["A"],"A":["A"]})
print("A.w=" + str(b.areas["A"].w))
overlaps = bu.get_overlaps(b.areas["A"].saved_winners[-22:],0,percentage=True)
print(overlaps)
def fixed_assembly_merge(n=100000, k=317, p=0.01, beta=0.05):
b = brain.Brain(p)
b.add_stimulus("stimA",k)
b.add_stimulus("stimB",k)
b.add_area("A",n,k,beta)
b.add_area("B",n,k,beta)
b.add_area("C",n,k,beta)
b.project({"stimA":["A"], "stimB":["B"]},{})
for i in xrange(20):
b.project({"stimA":["A"], "stimB":["B"]},
{"A":["A"], "B":["B"]})
b.areas["A"].fix_assembly()
b.areas["B"].fix_assembly()