Skip to content

Latest commit

 

History

History
236 lines (148 loc) · 6.06 KB

README.md

File metadata and controls

236 lines (148 loc) · 6.06 KB

Fourier transform code for intervalized (gappy) signals.

This code implements the idea developed in the paper:

Forward interval propagation through the discrete Fourier transform. M De Angelis, M Behrendt, L Comerford, Y Zhang, M Beer; arXiv preprint https://arxiv.org/abs/2012.09778.

To cite this code use the BibTex reference below.

@misc{intervalfourier2020,
      title={Forward interval propagation through the discrete Fourier transform}, 
      author={Marco De Angelis and Marco Behrendt and Liam Comerford and Yuanjin Zhang and Michael Beer},
      year={2020},
      eprint={2012.09778},
      archivePrefix={arXiv},
      primaryClass={eess.SP}
}

Disclaimer: This code was developed for illustration purposes and for proof-of-concept. Thus this code is not optimized for large-scale applications. An otimized version of the code is currently under development.

Installation and use

Clone the git repository on your machine, cd to the repository, open a Python3 interpreter and follow the steps below.

Import the interval Fourier transform package

from fourier.transform import transform as gappyFT

Generate a signal from a stationary power spectrum

This generates a precise signal.

signal,n = gappyFT.generate_signal(N=8) # Shinozuka
# NN = 2**N #=64
gappyFT.plot_signal(signal,lw=1,title='Signal from stationary power spectrum',color='rebeccapurple')

png

Intervalize the signal

Let us add $\pm$1 interval uncertainty to the time signal.

intervalsignal = gappyFT.intervalize(signal, plusminus=1.0) # outputs an interval vector
print(intervalsignal)
【-2.36916, -0.36916】
【1.20444, 3.20444】
【6.66901, 8.66901】
【3.45785, 5.45785】
【3.17543, 5.17543】
...
【3.23294, 5.23294】
【-1.76045, 0.239546】
【-5.23176, -3.23176】
【-6.72218, -4.72218】

Interval vectors have support for plotting as shown in the next cell.

intervalsignal.plot\
(xlabel=r'#$[x]$',ylabel=r'[x]',title=r'Signal with $\pm$ 1.0 information gaps (intervals)')

png

Pick out a signal within the bounds

Any signal within the interval bounds is allowed. So let's generate a few signals using the IntervalSignal API.

RAND_SIGNALS = intervalsignal.rand(N=100) # this picks out N (inner) random signals within the bounds

Let's plot the N randomly generated signals withint the bounds over the interval signal

fig,ax = gappyFT.subplots(figsize=(16,8))
for rs in RAND_SIGNALS:
    gappyFT.plot_signal(rs,ax=ax)
intervalsignal.plot(ax=ax)
ax.grid()
_=ax.set_xlim(0,55) # underscore here is used to suppress the output of this line

png

We are now ready to compute the amplitude of the gappy signal

We can do so using the polymorphic Fourier_amplitude function, which accepts both a precise and interval signal, and returns a Python list of (interval) amplitudes.

Whith the interval signal the bounds that we obtain, as shown in the following figure, are quite puffy.

FA = gappyFT.Fourier_amplitude(signal) # outputs a Python list of floats
IFA= gappyFT.Fourier_amplitude(intervalsignal) # outputs a Python list of Intervals

Let's plot the obtained bounds against some inner generated signals

FA_rand1 = gappyFT.Fourier_amplitude(intervalsignal.rand()) # outputs a Python list of floats
FA_rand2 = gappyFT.Fourier_amplitude(intervalsignal.rand()) # outputs a Python list of floats
FA_rand3 = gappyFT.Fourier_amplitude(intervalsignal.rand()) # outputs a Python list of floats
fig,ax = gappyFT.subplots(figsize=(16,8))
gappyFT.IntervalVector(IFA).plot(ax=ax,alpha=0.1)
gappyFT.plot_signal(FA,ax=ax,lw=3)
gappyFT.plot_signal(FA_rand1,ax=ax)
gappyFT.plot_signal(FA_rand2,ax=ax)
gappyFT.plot_signal(FA_rand3,ax=ax)
ax.grid()
_=ax.set_xlim(0,65)

png

We can even plot more inner signals using the IntervalSignal API and a loop

RAND_SIGNALS = intervalsignal.rand(N=20) 
fig,ax = gappyFT.subplots(figsize=(16,8))
gappyFT.IntervalVector(IFA).plot(ax=ax,alpha=0.1)
gappyFT.plot_y(FA,ax=ax,lw=3)
for rs in RAND_SIGNALS:
    FA_r = gappyFT.Fourier_amplitude(rs) # computes amplitude for each generated signal
    gappyFT.plot_y(FA_r,ax=ax) # plots amplitude of randomly generated signal
ax.grid()
_=ax.set_xlim(0,65)

png

Compute both the interval bounds (BI) and the selective bounds (BS).

The single function compute_amplitude_bounds will compute and output both bounds.

BI,BS = gappyFT.compute_amplitude_bounds(intervalsignal) # this can take a bit

Let's plot the results

fig,ax = gappyFT.subplots(figsize=(20,8))
# gappyFT.IntervalVector(IFA).plot(ax=ax,alpha=0.1)
gappyFT.IntervalVector(BI).plot(ax=ax,alpha=0.1,marker='',label='Interval')
gappyFT.IntervalVector(BS).plot(ax=ax,alpha=0.1,marker='',label='Selective')
gappyFT.plot_y(FA,ax=ax,lw=3)
for rs in RAND_SIGNALS:
    FA_r = gappyFT.Fourier_amplitude(rs) # computes amplitude for each generated signal
    gappyFT.plot_y(FA_r,ax=ax) # plots amplitude of randomly generated signal
gappyFT.plot_y(FA_r,ax=ax,label = 'Inner random') # this line is only for legend purposes
ax.set_title('Amplitude bounds vs random amplidutes',fontsize=20)
ax.set_xlabel('# Frequency')
ax.set_ylabel(r'$|z|$')
ax.legend(fontsize=20)
ax.grid()

png

Verification of results

The library enables also the verification of results for given frequencies.

An visual inspection can be used to verify the rigour of the bounds for each frequency.

gappyFT.verify_selective_with_plot(intervalsignal,[3,4,5,6,7,8,9,10,11,12,13,14],aspect='equal',figsize=(30,20))

png

gappyFT.verify_selective_with_plot(intervalsignal,[63,64,65,66,67,68,69,70,71,72,73,74],aspect='equal',figsize=(30,20))

png