Skip to content

Latest commit

 

History

History
234 lines (162 loc) · 4.1 KB

YOLONAS.md

File metadata and controls

234 lines (162 loc) · 4.1 KB

YOLO-NAS usage

NOTE: The yaml file is not required.

Convert model

1. Download the YOLO-NAS repo and install the requirements

git clone https://github.com/Deci-AI/super-gradients.git
cd super-gradients
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxsim onnxruntime

NOTE: It is recommended to use Python virtualenv.

2. Copy conversor

Copy the export_yolonas.py file from DeepStream-Yolo/utils directory to the super-gradients folder.

3. Download the model

Download the pth file from YOLO-NAS releases (example for YOLO-NAS S)

wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth

NOTE: You can use your custom model.

4. Convert model

Generate the ONNX model file (example for YOLO-NAS S)

python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --dynamic

NOTE: Model names

-m yolo_nas_s

or

-m yolo_nas_m

or

-m yolo_nas_l

NOTE: Number of classes (example for 80 classes)

-n 80

or

--classes 80

NOTE: To change the inference size (defaut: 640)

-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH

Example for 1280

-s 1280

or

-s 1280 1280

NOTE: To simplify the ONNX model (DeepStream >= 6.0)

--simplify

NOTE: To use dynamic batch-size (DeepStream >= 6.1)

--dynamic

NOTE: To use static batch-size (example for batch-size = 4)

--batch 4

NOTE: If you are using the DeepStream 5.1, remove the --dynamic arg and use opset 12 or lower. The default opset is 14.

--opset 12

5. Copy generated file

Copy the generated ONNX model file to the DeepStream-Yolo folder.

Compile the lib

  1. Open the DeepStream-Yolo folder and compile the lib

  2. Set the CUDA_VER according to your DeepStream version

export CUDA_VER=XY.Z
  • x86 platform

    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 = 12.1
    DeepStream 6.2 = 11.8
    DeepStream 6.1.1 = 11.7
    DeepStream 6.1 = 11.6
    DeepStream 6.0.1 / 6.0 = 11.4
    DeepStream 5.1 = 11.1
    
  • Jetson platform

    DeepStream 7.0 / 6.4 = 12.2
    DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
    DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
    
  1. Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo

Edit the config_infer_primary_yolonas file

Edit the config_infer_primary_yolonas.txt file according to your model (example for YOLO-NAS S with 80 classes)

[property]
...
onnx-file=yolo_nas_s_coco.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYoloE
...

NOTE: If you are using a custom model, you should edit the config_infer_primary_yolonas_custom.txt file.

NOTE: The YOLO-NAS resizes the input with left/top padding. To get better accuracy, use

[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...

NOTE: The pre-trained YOLO-NAS uses zero mean normalization on the image preprocess. It is important to change the net-scale-factor according to the trained values.

[property]
...
net-scale-factor=0.0039215697906911373
...

NOTE: The custom YOLO-NAS uses no normalization on the image preprocess. It is important to change the net-scale-factor according to the trained values.

[property]
...
net-scale-factor=1
...

Edit the deepstream_app_config file

...
[primary-gie]
...
config-file=config_infer_primary_yolonas.txt

Testing the model

deepstream-app -c deepstream_app_config.txt

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.