We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
this is my command:
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --simplify --batch 4 -s 640
and got this error:
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --simplify --batch 4 -s 640 Starting: rtdetr-l.pt Opening RT-DETR Ultralytics model Ultralytics YOLOv8.2.73 🚀 Python-3.10.12 torch-2.1.1+cu121 CPU (Intel Core(TM) i5-4590 3.30GHz) rt-detr-l summary: 494 layers, 32,148,140 parameters, 0 gradients, 103.8 GFLOPs Creating labels.txt file Exporting the model to ONNX Traceback (most recent call last): File "/opt/nvidia/deepstream/ultralytics/export_rtdetr_ultralytics.py", line 124, in <module> sys.exit(main(args)) File "/opt/nvidia/deepstream/ultralytics/export_rtdetr_ultralytics.py", line 92, in main torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 516, in export _export( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 1596, in _export graph, params_dict, torch_out = _model_to_graph( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 1139, in _model_to_graph graph = _optimize_graph( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 677, in _optimize_graph graph = _C._jit_pass_onnx(graph, operator_export_type) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 1940, in _run_symbolic_function return symbolic_fn(graph_context, *inputs, **attrs) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_helper.py", line 395, in wrapper return fn(g, *args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_helper.py", line 306, in wrapper return fn(g, *args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_opset10.py", line 203, in symbolic_fn padding_ceil = opset9.get_pool_ceil_padding( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_opset9.py", line 1565, in get_pool_ceil_padding return symbolic_helper._unimplemented( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_helper.py", line 612, in _unimplemented _onnx_unsupported(f"{op}, {msg}", value) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/symbolic_helper.py", line 623, in _onnx_unsupported raise errors.SymbolicValueError( torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator get_pool_ceil_padding, input size not accessible. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues [Caused by the value 'input.4 defined in (%input.4 : Float(*, *, *, *, strides=[3297312, 103041, 321, 1], requires_grad=0, device=cpu) = onnx::Pad[mode="constant"](%449, %476, %452), scope: torch.nn.modules.container.Sequential::/ultralytics.nn.tasks.DetectionModel::0/ultralytics.nn.modules.block.HGStem::model.0 # /opt/nvidia/deepstream/ultralytics/ultralytics/nn/modules/block.py:114:0 )' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Pad'.] (node defined in /opt/nvidia/deepstream/ultralytics/ultralytics/nn/modules/block.py(114): forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1508): _slow_forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1527): _call_impl /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1518): _wrapped_call_impl /opt/nvidia/deepstream/ultralytics/ultralytics/nn/tasks.py(141): _predict_once /opt/nvidia/deepstream/ultralytics/ultralytics/nn/tasks.py(120): predict /opt/nvidia/deepstream/ultralytics/ultralytics/nn/tasks.py(102): forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1508): _slow_forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1527): _call_impl /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1518): _wrapped_call_impl /usr/local/lib/python3.10/dist-packages/torch/nn/modules/container.py(215): forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1508): _slow_forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1527): _call_impl /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1518): _wrapped_call_impl /usr/local/lib/python3.10/dist-packages/torch/jit/_trace.py(124): wrapper /usr/local/lib/python3.10/dist-packages/torch/jit/_trace.py(133): forward /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1527): _call_impl /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py(1518): _wrapped_call_impl /usr/local/lib/python3.10/dist-packages/torch/jit/_trace.py(1285): _get_trace_graph /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py(915): _trace_and_get_graph_from_model /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py(1011): _create_jit_graph /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py(1135): _model_to_graph /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py(1596): _export /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py(516): export /opt/nvidia/deepstream/ultralytics/export_rtdetr_ultralytics.py(92): main /opt/nvidia/deepstream/ultralytics/export_rtdetr_ultralytics.py(124): <module> ) Inputs: #0: 449 defined in (%449 : Float(4, 32, 320, 320, strides=[3276800, 102400, 320, 1], requires_grad=0, device=cpu) = onnx::Relu(%input), scope: torch.nn.modules.container.Sequential::/ultralytics.nn.tasks.DetectionModel::0/ultralytics.nn.modules.block.HGStem::model.0/ultralytics.nn.modules.conv.Conv::stem1/torch.nn.modules.activation.ReLU::act # /usr/local/lib/python3.10/dist-packages/torch/nn/functional.py:1469:0 ) (type 'Tensor') #1: 476 defined in (%476 : Long(8, strides=[1], device=cpu) = onnx::Cast[to=7](%475), scope: torch.nn.modules.container.Sequential::/ultralytics.nn.tasks.DetectionModel::0/ultralytics.nn.modules.block.HGStem::model.0 # /opt/nvidia/deepstream/ultralytics/ultralytics/nn/modules/block.py:114:0 ) (type 'Tensor') #2: 452 defined in (%452 : NoneType = prim::Constant(), scope: torch.nn.modules.container.Sequential::/ultralytics.nn.tasks.DetectionModel::0/ultralytics.nn.modules.block.HGStem::model.0 ) (type 'NoneType') Outputs: #0: input.4 defined in (%input.4 : Float(*, *, *, *, strides=[3297312, 103041, 321, 1], requires_grad=0, device=cpu) = onnx::Pad[mode="constant"](%449, %476, %452), scope: torch.nn.modules.container.Sequential::/ultralytics.nn.tasks.DetectionModel::0/ultralytics.nn.modules.block.HGStem::model.0 # /opt/nvidia/deepstream/ultralytics/ultralytics/nn/modules/block.py:114:0 ) (type 'Tensor')
My environment is:
onnx 1.16.2 onnxruntime 1.18.1 onnxsim 0.4.36
The text was updated successfully, but these errors were encountered:
When I try to export with a custom size python3 rtdetr_export.py -w best.pt -s 384 640 --simplify --dynamic It works
python3 rtdetr_export.py -w best.pt -s 384 640 --simplify --dynamic
Sorry, something went wrong.
Use different torch version.
torch
No branches or pull requests
this is my command:
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --simplify --batch 4 -s 640
and got this error:
My environment is:
The text was updated successfully, but these errors were encountered: