forked from ridhipatil/RL_complex_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_toy.py
240 lines (218 loc) · 9.41 KB
/
main_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import pickle
import matplotlib
import matplotlib.pyplot as plt
import networkx as nx
import logging
import time
from argparse import ArgumentParser as argparse_ArgumentParser
def network(G, gg, value_dict, dens_counter, valuefn_update, intervals, subgraphs):
iteration = 0
reward_dict = {}
gamma = 0.5
# run for each graph in subgraph
for graph in subgraphs:
all_nodes = list(G.nodes())
iteration = iteration + 1
sub = graph
nodes_list = list(sub.nodes())
logging.warning('Current graph')
logging.warning(nodes_list)
for n in nodes_list:
# create rewards dictionary to assign for nodes inside and outside of complex
for i in nodes_list:
reward_dict[str(i)] = 0.2
str_list = [str(n) for n in nodes_list]
nodes_list_set = set(str_list)
all_nodes_set = set(all_nodes)
remaining_n = all_nodes_set - nodes_list_set
for i in remaining_n:
reward_dict[i] = -0.2
# make sure n is not a node floating around and has neighbors
neighb_n = list(G.neighbors(n))
while len(neighb_n) == 0:
i = nodes_list.index(n) + 1
n = nodes_list[i]
if len(neighb_n) != 0:
break
i += 1
# new graph to store new complexes
gg = nx.Graph()
x = [(neib, G.get_edge_data(n, neib)) for neib in neighb_n]
# add neighbor with edge that gives maximum edge weight
n2 = max(x, key=lambda x: x[1]['weight'])[0]
max_weight = G.get_edge_data(n, n2)
nx.add_path(gg, [n, n2], weight=max_weight.get('weight'))
# value iteration
while True:
# Initial value functions of states are 0
curr_nodes = gg.nodes # all current nodes
# get neighbors of current nodes
neighbors = []
imag_n = 0
neighb_val = {}
for k in curr_nodes:
neighbors = neighbors + list(G.neighbors(k))
neighbors = list(set(neighbors) - set(curr_nodes))
for m in neighbors:
for k in curr_nodes:
curr_nb = list(G.neighbors(k))
if m in curr_nb:
temp_weight = G.get_edge_data(k, m)
nx.add_path(gg, [k, m], weight=temp_weight.get('weight'))
temp_dens = nx.density(gg)
gg.remove_node(m) # remove node
# get intervals for density
for i in intervals:
if temp_dens <= i:
temp_dens = i
break
else:
continue
# new state if new density encountered
if temp_dens not in value_dict:
logging.warning("Value function of new density")
# find corresponding reward
reward = reward_dict[m]
update = reward + gamma * 0
#valuefn_update[temp_dens] = update
imag_n = 0 + gamma * 0
# if density encountered before, update VF
else:
logging.warning("Updating value function of density")
# get value function of neighbor
old_val = value_dict[temp_dens]
reward = reward_dict[m]
update = reward + gamma * old_val
#valuefn_update[temp_dens] = update
imag_n = 0 + gamma * old_val # add imaginary node value function to stop program
neighb_val[m] = update
# find the node that has the highest value function
neighb_val[2] = imag_n
if len(neighbors) != 0:
added_n = max(neighb_val, key=neighb_val.get) # max, get index
else:
added_n = 2
if added_n == 2:
break
else:
# Value function is not less than 0, continue adding max node
d = nx.density(gg)
for i in intervals:
if d <= i:
d = i
break
else:
continue
# density frequency counter
if d not in dens_counter.keys():
dens_counter[d] = 1
else:
dens_counter[d] += 1
# add node with maximum VF to subgraph
for k in list(curr_nodes):
neighbors = list(G.neighbors(k))
if added_n in neighbors:
ed_weight = G.get_edge_data(added_n, k)
nx.add_path(gg, [added_n, k], weight=ed_weight.get('weight'))
value_dict[d] = neighb_val[added_n]
return gg
# e += 1
def main():
start_time = time.time()
matplotlib.use('Agg')
logging.basicConfig(level=logging.WARNING)
matplotlib.use('tkagg')
## input data
parser = argparse_ArgumentParser("Input parameters")
parser.add_argument("--input_training_file", default="", help="Training Complexes file path")
parser.add_argument("--graph_file", default="", help="Graph edges file path")
parser.add_argument("--toy_train_results", default="", help="Directory for main results")
args = parser.parse_args()
# get training data
#file = "../../toy_network/train_complexes.txt"
file = args.input_training_file
with open(file) as f:
complexes = f.read().splitlines()
for c in range(len(complexes)):
complexes[c] = complexes[c].split()
# get edges data
#filename = "../../toy_network/all_complexes.pkl"
filename = args.graph_file
with open(filename, "rb") as f:
G = pickle.load(f)
nx.write_weighted_edgelist(G, "../../toy_network/toy_weighted_edges.txt")
G = nx.read_weighted_edgelist("../../toy_network/toy_weighted_edges.txt")
f.close()
# remove duplicate edges and none
G.remove_edges_from(nx.selfloop_edges(G))
for i in list(G.nodes()):
if i.isnumeric() is False:
G.remove_node(i)
# create subgraphs from training complexes
subgraphs = []
for s in range(len(complexes)):
sub = G.subgraph(complexes[s])
subgraphs.append(sub)
value_dict = {}
gg = nx.Graph()
dens = nx.density(gg)
value_dict[dens] = 0
dens_counter = {} # frequency of each density encountered
valuefn_update = {} # shows how value fn changes over time for each density
intervals = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1]
network(G, gg, value_dict, dens_counter, valuefn_update, intervals, subgraphs)
# save value function scores in dictionary
#args.toy_train_results = "../../toy_network/train_results"
fname = args.toy_train_results + "/value_fn_dens_dict.txt"
file = open(fname, "w")
value_dict_sorted = sorted(value_dict.items())
# value_dict_sort = {keys[i]: vals[i] for i in range(len(keys))}
str_dictionary = repr(value_dict_sorted)
file.write(str_dictionary + "\n")
file.close()
fname = args.toy_train_results + "/value_fn_dens_dict.pkl"
with open(fname, 'wb') as f:
pickle.dump(value_dict_sorted, f)
# Frequency of density visited
fname = args.toy_train_results + "/density_freq.txt"
file = open(fname, "w")
str_dictionary = repr(dens_counter)
file.write("density = " + str_dictionary + "\n")
file.close()
dens_counter = dict(sorted(dens_counter.items()))
x = list(dens_counter.keys())
y = list(dens_counter.values())
plt.figure()
plt.title("Density Histogram")
plt.ylabel("Frequency")
plt.xlabel("Density")
plt.bar(range(len(x)), y)
plt.xticks(range(len(x)), x)
plt.savefig(args.toy_train_results + '/density_freq_hist.png')
# plotting Value Function vs Density
keys = [key[0] for key in value_dict_sorted]
vals = [val[1] for val in value_dict_sorted]
x = keys # density
y = vals # value function
plt.figure()
plt.plot(x, y, 'o-')
plt.xlabel('Density')
plt.ylabel('Value Function')
plt.title('Value Function and Density Relationship')
plt.savefig(args.toy_train_results + '/Value Function and Density Relationship.png')
# plot updating value fns for each one
# keys = valuefn_update.keys()
# for i in keys:
# y = valuefn_update[i]
# plt.figure()
# plt.plot(y, 'o-')
# plt.xlabel('Time')
# plt.ylabel('Value Function')
# str_key = str(i)
# title = 'Value Function and Density Over Time for ' + str_key
# plt.title(title)
# plt.savefig(args.toy_train_results + '/' + title + '.png')
print("--- %s seconds ---" % (time.time() - start_time))
if __name__ == '__main__':
main()