forked from ridhipatil/RL_complex_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsizewise_scores.py
55 lines (46 loc) · 1.65 KB
/
sizewise_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from argparse import ArgumentParser as argparse_ArgumentParser
import matplotlib.pyplot as plt
def sizewise_scores(filename, figname):
with open(filename) as f:
rawlines = f.readlines()
scores = {}
for rawline in rawlines:
words = rawline.split()
size = len(words) - 1
score = words[-1]
if size not in scores:
scores[size] = [float(score), 1]
else:
scores[size][0] += float(score)
scores[size][1] += 1
sizes = []
counts = []
avg_scores = []
for size in scores:
sizes.append(size)
avg_scores.append(float(scores[size][0])/scores[size][1])
counts.append(scores[size][1])
plt.figure()
plt.plot(sizes, avg_scores, 'b.')
plt.title("Classifier score variation with size")
plt.xlabel("Size")
plt.ylabel("Classifier score")
for i, txt in enumerate(counts):
plt.annotate(txt, (sizes[i], avg_scores[i]))
plt.savefig(figname)
plt.close()
def main():
parser = argparse_ArgumentParser("Input parameters")
parser.add_argument("--main_folder", help="Folder of the results")
args = parser.parse_args()
main_folder="./humap/results_73_neg_same_size_distmetropolis/"
#main_folder="./humap/results_73_neg_same_size_distisa/"
#main_folder="./humap/results_73_neg_same_size_distcliques/"
#main_folder="./humap/results_73_neg_same_size_distsearch_top_neigs/"
if args.main_folder:
main_folder = args.main_folder
filename = main_folder + "res_pred.out"
figname = main_folder + "res_sizewise_scores_pred.png"
sizewise_scores(filename, figname)
if __name__ == '__main__':
main()