forked from ridhipatil/RL_complex_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_F1_MMR.py
50 lines (30 loc) · 1.15 KB
/
test_F1_MMR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 11 17:24:13 2021
@author: Meghana
"""
from numpy import random as rnd
import numpy as np
import networkx as nx
# requires networkx 2.5 (2.3 does'nt support)
def f1_mmr(wt_mat):
wt_mat = - wt_mat
nr, nc = np.shape(wt_mat)
B = nx.Graph()
# Add nodes with the node attribute "bipartite"
B.add_nodes_from(['t' + str(i) for i in range(nr)], bipartite=0)
B.add_nodes_from(['p' + str(j) for j in range(nc)], bipartite=1)
# Add edges only between nodes of opposite node sets
B.add_weighted_edges_from([('t' + str(i),'p' + str(j), wt_mat[i,j]) for i in range(nr) for j in range(nc)])
max_matching_edges = nx.algorithms.bipartite.matching.minimum_weight_full_matching(B)
sum_wts = -sum([B[key][val]['weight'] for key,val in max_matching_edges.items()])/2
recall = sum_wts/nr
prec = sum_wts/nc
f1 = 2*recall*prec/(prec+recall)
return prec, recall, f1, max_matching_edges
# test
#wt_mat = rnd.rand(3,4)
#prec, recall, f1, max_matching_edges = f1_mmr(wt_mat)
#print(f1)
#print(max_matching_edges)
#print(wt_mat)