forked from mohaseeb/shaplets-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
77 lines (60 loc) · 2.07 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from __future__ import division, print_function
from os.path import expanduser
from sklearn.metrics import classification_report
from shapelets_lts.classification import LtsShapeletClassifier
from shapelets_lts.util import ucr_dataset_loader, plot_sample_shapelets
"""
This example uses dataset from the UCR archive "UCR Time Series Classification
Archive" format.
- Follow the instruction on the UCR page
(http://www.cs.ucr.edu/~eamonn/time_series_data/) to download the dataset. You
need to be patient! :)
- Update the vars below to point to the correct dataset location in your
machine.
Otherwise update _load_train_test_datasets() below to return your own dataset.
"""
ucr_dataset_base_folder = expanduser('~/ws/data/UCR_TS_Archive_2015/')
ucr_dataset_name = 'Gun_Point'
def main():
# load the data
print('\nLoading data...')
x_train, y_train, x_test, y_test = _load_train_test_datasets()
# create a classifier
Q = x_train.shape[1]
K = int(0.15 * Q)
L_min = int(0.2 * Q)
clf = LtsShapeletClassifier(
K=K,
R=3,
L_min=L_min,
epocs=30,
lamda=0.01,
eta=0.01,
shapelet_initialization='segments_centroids',
plot_loss=True
)
# train the classifier
print('\nTraining...')
clf.fit(x_train, y_train)
# evaluate on test data
print('\nEvaluating...')
y_pred = clf.predict(x_test)
print(
'classification report...\n{}'
''.format(classification_report(y_true=y_test, y_pred=y_pred))
)
# plot sample shapelets
print('\nPlotting sample shapelets...')
plot_sample_shapelets(shapelets=clf.get_shapelets(), sample_size=36)
def _load_train_test_datasets():
"""
:return: numpy arrays, train_data, train_labels, test_data, test_labels
train_data and test_data shape is: (n_samples, n_features)
train_labels and test_labels shape is: (n_samples)
"""
return ucr_dataset_loader.load_dataset(
dataset_name=ucr_dataset_name,
dataset_folder=ucr_dataset_base_folder
)
if __name__ == '__main__':
main()