-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCovid19-WorldV2.py
216 lines (199 loc) · 6.84 KB
/
Covid19-WorldV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import DateTime as dt
# Country Selector
url = 'https://covid.ourworldindata.org/data/owid-covid-data.xlsx?raw=True'
country_name = 'Germany'
df_main = pd.read_excel(url, sheet_name='Sheet1')
df = df_main[df_main["location"] == country_name]
days = np.linspace(0, len(df), len(df)).astype(int)
date = df['date']
day = []
for dates in date:
dayT = dates[5:7] + '-' + dates[8:10]
day.append(dayT)
# 1 Daily new cases
new_cases = df['new_cases']
case_100 = np.argmax(new_cases > 100)
new_cases_roll = df.new_cases.rolling(5).mean()
y_pos = range(len(day))
plt.figure(1)
plt.title('Daily new cases' + ' - ' + country_name)
plt.bar(day[case_100:], new_cases[case_100:])
# Rotation of the bars names
plt.plot(day[case_100:], new_cases_roll[case_100:], 'r', linewidth=3)
plt.xlabel('Date')
plt.ylabel('Number of cases / day')
plt.xticks(day[case_100::2], rotation=90)
leg1 = '5 day moving average - ' + country_name
leg2 = 'Number of cases / day - ' + country_name
plt.legend([leg1, leg2])
# 2 Cumulative cases on semilog plot
cum_cases = df.new_cases.cumsum()
plt.figure(2)
plt.suptitle('Daily new cases' + ' - ' + country_name)
plt.subplot(2, 1, 1)
plt.grid(True, which="both")
plt.semilogy(day[case_100:], cum_cases[case_100:])
plt.ylim([100, max(cum_cases) + 1000])
plt.xlabel('Date')
plt.ylabel('Cumulative cases (Semilog plot)')
plt.xticks(day[case_100::2], rotation=90)
plt.subplot(2, 1, 2)
plt.grid(True, which="both")
plt.plot(day[case_100:], cum_cases[case_100:])
plt.ylim([100, max(cum_cases) + 1000])
plt.xlabel('Date')
plt.ylabel('Cumulative cases')
plt.xticks(day[case_100::2], rotation=90)
# 3 Deaths (New Deaths)
new_deaths = df['new_deaths']
new_deaths_roll = df.new_deaths.rolling(5).mean()
plt.figure(3)
plt.grid(True, which="both")
plt.title('New deaths' + ' - ' + country_name)
plt.bar(day[case_100:], new_deaths[case_100:])
plt.plot(day[case_100:], new_deaths_roll[case_100:], 'r', linewidth=3)
plt.xlabel('Date')
plt.ylabel('Number of deaths / day')
leg1 = '5 day moving average - '
leg2 = 'Number of deaths / day - '
plt.legend([leg1, leg2])
plt.xticks(day[case_100::2], rotation=90)
# 4 Death cumulative
cum_deaths = df.new_deaths.cumsum()
plt.figure(4)
plt.suptitle('Cumulative Deaths' + ' - ' + country_name)
plt.subplot(2, 1, 1)
plt.grid(True, which="both")
plt.semilogy(day[case_100:], cum_deaths[case_100:])
plt.ylim([0.1, max(cum_deaths) + (0.01 * max(cum_deaths))])
plt.xlabel('Date')
plt.ylabel('Cumulative deaths (Semilog plot)')
plt.xticks(day[case_100::2], rotation=90)
plt.subplot(2, 1, 2)
plt.grid(True, which="both")
plt.plot(day[case_100:], cum_deaths[case_100:])
plt.ylim([0.1, max(cum_deaths) + (0.01 * max(cum_deaths))])
plt.xlabel('Date')
plt.ylabel('Cumulative deaths')
plt.xticks(day[case_100::2], rotation=90)
# 5 Case doubling rate
cdr_interval = 7
cum_cases = cum_cases.to_numpy()
idx_probe = []
cdr_pts = []
cdr_idx = np.argmax(cum_cases > 100) + cdr_interval # n+7 idx after 100th case (n=100th case)
if cum_cases[-1] > 2000:
for cdr in range(cdr_idx, len(cum_cases)):
cdr_pts.append(cdr_interval / (np.log2(cum_cases[cdr]) - np.log2(cum_cases[cdr - cdr_interval])))
plt.figure(5)
plt.title('Case Doubling Rate ' + ' ' + country_name)
plt.plot(day[cdr_idx:], cdr_pts[:], 'o-')
plt.xlabel('Date')
plt.ylabel('Case Doubling Rate')
plt.xticks(day[cdr_idx::2], rotation=90)
# Death doubling rate
ddr_interval = 7
cum_deaths = cum_deaths.to_numpy()
idx_probe = []
ddr_pts = []
ddr_idx = np.argmax(cum_deaths > 50) + cdr_interval # n+7 idx after 100th case (n=100th case)
if cum_deaths[-1] > 50:
for ddr in range(ddr_idx, len(cum_deaths)):
ddr_pts.append(ddr_interval / (np.log2(cum_deaths[ddr]) - np.log2(cum_deaths[ddr - ddr_interval])))
plt.figure(7)
plt.title('Death Doubling Rate ' + ' ' + country_name)
plt.plot(day[ddr_idx::2], ddr_pts[::2], 'o-')
plt.xlabel('Date')
plt.ylabel('Death Doubling Rate')
plt.xticks(rotation=90)
# 7 Testing Stats
df.total_tests.fillna(0, inplace=True)
cum_tests = df.total_tests
cum_tests = cum_tests.to_numpy()
if np.sum(cum_tests) > 0:
idx_test = cum_tests > 0
plt.figure(8)
plt.suptitle('Test data' + ' - ' + country_name)
plt.subplot(3, 1, 1)
plt.grid()
plt.plot(days[idx_test], cum_tests[idx_test])
plt.xlabel('Days since 31 Dec 2019')
plt.ylabel('Total Samples tested')
plt.subplot(3, 1, 2)
pos_tests = cum_tests[idx_test]
pos_samples = cum_cases[idx_test]
pos_tests = np.append(pos_tests[0], np.diff(pos_tests))
pos_samples = np.append(pos_samples[0], np.diff(pos_samples))
plt.bar(days[idx_test], pos_tests)
# plt.semilogy(days[idx_test], cum_tests[idx_test])
plt.xlabel('Days since 31 Dec 2019')
plt.ylabel('Daily samples tested')
plt.grid()
plt.subplot(3, 1, 3)
plt.grid()
pos_rat = pos_samples * 100 / pos_tests
plt.plot(days[idx_test], pos_rat, 'o-')
plt.xlabel('Days since 31 Dec 2019')
plt.ylabel('% Positive')
plt.ylim([0, max(pos_rat)])
plt.subplots_adjust(hspace=0.25)
# 9 Case Fatality Rate
plt.figure(9)
plt.title('Case fatality rate' + ' - ' + country_name)
plt.plot(day[case_100:], df.total_deaths[case_100:] * 100 / df.total_cases[case_100:])
plt.xlabel('Date')
plt.ylabel('% of people confirmed dead')
plt.xticks(day[cdr_idx::2], rotation=90)
# 10 Case Growth Rate
new_cases = df.new_cases[case_100:]
count = 1
cgr = []
for cases in new_cases:
if count == 1:
cgr.append(0)
old_cases = cases
print(old_cases)
count = count + 1
else:
if old_cases is 0:
cgr.append(np.nan)
old_cases = cases
else:
cgr.append(cases / old_cases)
old_cases = cases
plt.figure(10)
plt.plot(day[case_100:], cgr)
plt.xticks(day[case_100:], rotation=90)
plt.xlabel('Date')
plt.ylabel('Case Growth Ratio')
plt.title('Case Growth Rate' + ' ' + country_name)
# 11 Death Growth Rate
new_deaths = df.new_deaths[ddr_idx:]
count = 1
dgr = []
for deaths in new_deaths:
if count == 1:
dgr.append(0)
old_deaths = deaths
count = count + 1
else:
if old_deaths is 0:
dgr.append(np.nan)
old_deaths = deaths
else:
dgr.append(deaths/old_deaths)
old_deaths = deaths
plt.figure(11)
plt.plot(day[ddr_idx:], dgr)
plt.xticks(day[ddr_idx:], rotation=90)
plt.xlabel('Date')
plt.ylabel('Death Growth Ratio')
plt.title('Death Growth Rate' + ' ' + country_name)
# To include -> R0 calculation
# -> Active Cases vs Total Cases
# -> % Recovered vs % Dead in cases with outcome
# -> Case Growth Ratio vs Testing Growth Ratio
# ->