-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Hamilton path.cpp
106 lines (84 loc) · 2.51 KB
/
Hamilton path.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* C/C++ program for solution of Hamiltonian Cycle problem using backtracking */
/*
Hamiltonian Path in an undirected graph is a path that visits each vertex exactly once.
A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian Path such that there is an
edge (in graph) from the last vertex to the first vertex of the Hamiltonian Path
*/
#include<stdio.h>
// Number of vertices in the graph
#define V 5
void printSolution(int path[]);
bool isSafe(int v, bool graph[V][V], int path[], int pos)
{
if (graph [ path[pos-1] ][ v ] == 0)
return false;
for (int i = 0; i < pos; i++)
if (path[i] == v)
return false;
return true;
}
bool hamCycleUtil(bool graph[V][V], int path[], int pos)
{
if (pos == V)
{
if ( graph[ path[pos-1] ][ path[0] ] == 1 )
return true;
else
return false;
}
for (int v = 1; v < V; v++)
{
if (isSafe(v, graph, path, pos))
{
path[pos] = v;
if (hamCycleUtil (graph, path, pos+1) == true)
return true;
path[pos] = -1;
}
}
return false;
}
bool hamCycle(bool graph[V][V])
{
int *path = new int[V];
for (int i = 0; i < V; i++)
path[i] = -1;
path[0] = 0;
if ( hamCycleUtil(graph, path, 1) == false )
{
printf("\nSolution does not exist");
return false;
}
printSolution(path);
return true;
}
void printSolution(int path[])
{
printf ("Solution Exists:"
" Following is one Hamiltonian Cycle \n");
for (int i = 0; i < V; i++)
printf(" %d ", path[i]);
// Let us print the first vertex again to show the complete cycle
printf(" %d ", path[0]);
printf("\n");
}
// driver program to test above function
int main()
{
bool graph1[V][V] = {{0, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{0, 1, 0, 0, 1},
{1, 1, 0, 0, 1},
{0, 1, 1, 1, 0},
};
hamCycle(graph1);
bool graph2[V][V] = {{0, 1, 0, 1, 0},
{1, 0, 1, 1, 1},
{0, 1, 0, 0, 1},
{1, 1, 0, 0, 0},
{0, 1, 1, 0, 0},
};
// Print the solution
hamCycle(graph2);
return 0;
}