-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathPrimsMSTusingAdjacencyList.cpp
309 lines (261 loc) · 8.64 KB
/
PrimsMSTusingAdjacencyList.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// C / C++ program for Prim's MST for adjacency list representation of graph
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
// A structure to represent a node in adjacency list
struct AdjListNode
{
int dest;
int weight;
struct AdjListNode* next;
};
// A structure to represent an adjacency liat
struct AdjList
{
struct AdjListNode *head; // pointer to head node of list
};
// A structure to represent a graph. A graph is an array of adjacency lists.
// Size of array will be V (number of vertices in graph)
struct Graph
{
int V;
struct AdjList* array;
};
// A utility function to create a new adjacency list node
struct AdjListNode* newAdjListNode(int dest, int weight)
{
struct AdjListNode* newNode =
(struct AdjListNode*) malloc(sizeof(struct AdjListNode));
newNode->dest = dest;
newNode->weight = weight;
newNode->next = NULL;
return newNode;
}
// A utility function that creates a graph of V vertices
struct Graph* createGraph(int V)
{
struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));
graph->V = V;
// Create an array of adjacency lists. Size of array will be V
graph->array = (struct AdjList*) malloc(V * sizeof(struct AdjList));
// Initialize each adjacency list as empty by making head as NULL
for (int i = 0; i < V; ++i)
graph->array[i].head = NULL;
return graph;
}
// Adds an edge to an undirected graph
void addEdge(struct Graph* graph, int src, int dest, int weight)
{
// Add an edge from src to dest. A new node is added to the adjacency
// list of src. The node is added at the begining
struct AdjListNode* newNode = newAdjListNode(dest, weight);
newNode->next = graph->array[src].head;
graph->array[src].head = newNode;
// Since graph is undirected, add an edge from dest to src also
newNode = newAdjListNode(src, weight);
newNode->next = graph->array[dest].head;
graph->array[dest].head = newNode;
}
// Structure to represent a min heap node
struct MinHeapNode
{
int v;
int key;
};
// Structure to represent a min heap
struct MinHeap
{
int size; // Number of heap nodes present currently
int capacity; // Capacity of min heap
int *pos; // This is needed for decreaseKey()
struct MinHeapNode **array;
};
// A utility function to create a new Min Heap Node
struct MinHeapNode* newMinHeapNode(int v, int key)
{
struct MinHeapNode* minHeapNode =
(struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));
minHeapNode->v = v;
minHeapNode->key = key;
return minHeapNode;
}
// A utilit function to create a Min Heap
struct MinHeap* createMinHeap(int capacity)
{
struct MinHeap* minHeap =
(struct MinHeap*) malloc(sizeof(struct MinHeap));
minHeap->pos = (int *)malloc(capacity * sizeof(int));
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array =
(struct MinHeapNode**) malloc(capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
// A utility function to swap two nodes of min heap. Needed for min heapify
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// A standard function to heapify at given idx
// This function also updates position of nodes when they are swapped.
// Position is needed for decreaseKey()
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest, left, right;
smallest = idx;
left = 2 * idx + 1;
right = 2 * idx + 2;
if (left < minHeap->size &&
minHeap->array[left]->key < minHeap->array[smallest]->key )
smallest = left;
if (right < minHeap->size &&
minHeap->array[right]->key < minHeap->array[smallest]->key )
smallest = right;
if (smallest != idx)
{
// The nodes to be swapped in min heap
MinHeapNode *smallestNode = minHeap->array[smallest];
MinHeapNode *idxNode = minHeap->array[idx];
// Swap positions
minHeap->pos[smallestNode->v] = idx;
minHeap->pos[idxNode->v] = smallest;
// Swap nodes
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// A utility function to check if the given minHeap is ampty or not
int isEmpty(struct MinHeap* minHeap)
{
return minHeap->size == 0;
}
// Standard function to extract minimum node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
if (isEmpty(minHeap))
return NULL;
// Store the root node
struct MinHeapNode* root = minHeap->array[0];
// Replace root node with last node
struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1];
minHeap->array[0] = lastNode;
// Update position of last node
minHeap->pos[root->v] = minHeap->size-1;
minHeap->pos[lastNode->v] = 0;
// Reduce heap size and heapify root
--minHeap->size;
minHeapify(minHeap, 0);
return root;
}
// Function to decreasy key value of a given vertex v. This function
// uses pos[] of min heap to get the current index of node in min heap
void decreaseKey(struct MinHeap* minHeap, int v, int key)
{
// Get the index of v in heap array
int i = minHeap->pos[v];
// Get the node and update its key value
minHeap->array[i]->key = key;
// Travel up while the complete tree is not hepified.
// This is a O(Logn) loop
while (i && minHeap->array[i]->key < minHeap->array[(i - 1) / 2]->key)
{
// Swap this node with its parent
minHeap->pos[minHeap->array[i]->v] = (i-1)/2;
minHeap->pos[minHeap->array[(i-1)/2]->v] = i;
swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]);
// move to parent index
i = (i - 1) / 2;
}
}
// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap *minHeap, int v)
{
if (minHeap->pos[v] < minHeap->size)
return true;
return false;
}
// A utility function used to print the constructed MST
void printArr(int arr[], int n)
{
for (int i = 1; i < n; ++i)
printf("%d - %d\n", arr[i], i);
}
// The main function that constructs Minimum Spanning Tree (MST)
// using Prim's algorithm
void PrimMST(struct Graph* graph)
{
int V = graph->V;// Get the number of vertices in graph
int parent[V]; // Array to store constructed MST
int key[V]; // Key values used to pick minimum weight edge in cut
// minHeap represents set E
struct MinHeap* minHeap = createMinHeap(V);
// Initialize min heap with all vertices. Key value of
// all vertices (except 0th vertex) is initially infinite
for (int v = 1; v < V; ++v)
{
parent[v] = -1;
key[v] = INT_MAX;
minHeap->array[v] = newMinHeapNode(v, key[v]);
minHeap->pos[v] = v;
}
// Make key value of 0th vertex as 0 so that it
// is extracted first
key[0] = 0;
minHeap->array[0] = newMinHeapNode(0, key[0]);
minHeap->pos[0] = 0;
// Initially size of min heap is equal to V
minHeap->size = V;
// In the followin loop, min heap contains all nodes
// not yet added to MST.
while (!isEmpty(minHeap))
{
// Extract the vertex with minimum key value
struct MinHeapNode* minHeapNode = extractMin(minHeap);
int u = minHeapNode->v; // Store the extracted vertex number
// Traverse through all adjacent vertices of u (the extracted
// vertex) and update their key values
struct AdjListNode* pCrawl = graph->array[u].head;
while (pCrawl != NULL)
{
int v = pCrawl->dest;
// If v is not yet included in MST and weight of u-v is
// less than key value of v, then update key value and
// parent of v
if (isInMinHeap(minHeap, v) && pCrawl->weight < key[v])
{
key[v] = pCrawl->weight;
parent[v] = u;
decreaseKey(minHeap, v, key[v]);
}
pCrawl = pCrawl->next;
}
}
// print edges of MST
printArr(parent, V);
}
// Driver program to test above functions
int main()
{
// Let us create the graph given in above fugure
int V = 9;
struct Graph* graph = createGraph(V);
addEdge(graph, 0, 1, 4);
addEdge(graph, 0, 7, 8);
addEdge(graph, 1, 2, 8);
addEdge(graph, 1, 7, 11);
addEdge(graph, 2, 3, 7);
addEdge(graph, 2, 8, 2);
addEdge(graph, 2, 5, 4);
addEdge(graph, 3, 4, 9);
addEdge(graph, 3, 5, 14);
addEdge(graph, 4, 5, 10);
addEdge(graph, 5, 6, 2);
addEdge(graph, 6, 7, 1);
addEdge(graph, 6, 8, 6);
addEdge(graph, 7, 8, 7);
PrimMST(graph);
return 0;
}