- BFS'ed all the connected components and allotted them Size.
- stored them in a map, in
color -> size
manner. - then traversed over zeroes and check if neighbouring element is 1?
- if yes, then from which colour that belongs.
- what is the size.
- stored and returned the max ans.
BFS and coloring
int dr[] = {1, -1, 0, 0};
int dc[] = {0, 0, -1, 1};
class Solution {
public:
int largestIsland(vector<vector<int>> &grid) {
int n = grid.size();
int m = grid[0].size();
vector<vector<int>> used(n, vector<int>(m, false));
queue<pair<int, int>> qu;
map<int, int> mp;
int color = 1;
mp[0] = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1 and !used[i][j]) {
int Size = 1;
qu.push({i, j});
used[i][j] = color;
while (!qu.empty()) {
auto [r, c] = qu.front();
qu.pop();
for (int k = 0; k < 4; k++) {
int rr = r + dr[k];
int cc = c + dc[k];
if (rr < 0 or cc < 0 or rr >= n or cc >= n or used[rr][cc] or
grid[rr][cc] != 1)
continue;
qu.push({rr, cc});
used[rr][cc] = color;
Size++;
}
}
ans = max(ans, Size);
mp[color] = Size;
color++;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) {
int sum = 0;
map<int, bool> usedColor;
for (int k = 0; k < 4; k++) {
int rr = i + dr[k];
int cc = j + dc[k];
if (rr < 0 or cc < 0 or rr >= n or cc >= n)
continue;
int currentColor = used[rr][cc];
if (usedColor.count(currentColor))
continue;
sum += (mp[currentColor]);
if (currentColor != 0) {
usedColor[currentColor] = true;
}
}
ans = max(ans, sum + 1);
}
}
}
return ans;
}
};
-
converted 2D values into 1D, so that they may get store in DSU.
CORRECT, range is 0 -> n^m (current_row, current_col) -> (current_row * total_col + current_col) OR (current_row + current_rows * total_cols)
WRONG, range is 0 -> n * n || 0 -> m * m (current_row, current_col) -> (current_row * total_rows + current_col) OR (current_row + current_col * total_cols)
-
stored in DSU
-
traversed over zeroes in graph
-
if the neighbouring element is 1, then did the calculation to store the maximum area.
implementation
int dr[] = {-1, 1, 0, 0};
int dc[] = {0, 0, -1, 1};
class Solution {
// Dsu implementation, begin
class UnionFind {
public:
std::vector<int> Parent;
std::vector<int> Size;
void init(int n) {
Size.resize(int(3e5) + 5, 1);
Parent.resize(int(3e5) + 5, 0);
for (int i = 0; i < n; i++)
Parent[i] = i;
}
void makeSet(int n) {
Parent[n] = n;
Size[n] = 1;
}
int findSet(int i) {
return (Parent[i] == i) ? i : (Parent[i] = findSet(Parent[i]));
}
bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
void unionSet(int a, int b) {
a = findSet(a);
b = findSet(b);
if (a == b)
return;
if (Size[a] < Size[b])
std::swap(a, b);
Parent[b] = a;
Size[a] += Size[b];
}
} dsu;
// Dsu implementation, end
public:
int largestIsland(vector<vector<int>> &grid) {
int n = grid.size();
int m = grid[0].size();
dsu.init(n * m);
queue<pair<int, int>> qu;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
if (grid[i][j] == 1)
qu.push({i, j});
vector<vector<bool>> used(n, vector<bool>(m, false));
while (!qu.empty()) {
auto [r, c] = qu.front();
qu.pop();
int u = r + c * m;
for (int i = 0; i < 4; i++) {
int rr = dr[i] + r;
int cc = dc[i] + c;
if (rr < 0 or rr >= n or cc < 0 or cc >= m)
continue;
if (used[rr][cc])
continue;
if (grid[rr][cc] == 0)
continue;
used[rr][cc] = true;
int v = rr + cc * m;
if (dsu.isSameSet(v, u))
continue;
dsu.unionSet(v, u);
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) {
int count = 0;
set<int> parents;
for (int k = 0; k < 4; k++) {
int r = dr[k] + i;
int c = dc[k] + j;
if (r < 0 or r >= n or c < 0 or c >= m)
continue;
if (grid[r][c] == 0)
continue;
parents.insert(dsu.findSet(r + c * m));
}
for (const auto &k : parents)
count += dsu.Size[k];
ans = max(ans, count + 1);
} else {
ans = max(ans, dsu.Size[dsu.findSet(i + j * m)]);
}
}
}
return ans;
}
};