3- types, Medium-hard
- base on concept of MST, with some maths
- Things I learnt
- When to use two MST side by side.
- Do note that calculation part.
- Approach
- Made
2 MST's
to maintain individual count and mixed count. - if
type is 3
then added to both MST, else to individuals. - do note that the
common count
will getdoubled
at the end, because it is getting count twice every time. - Do note that calculation part.
- then we checked if the vertices in each MST is equal to the vertices provided?
- Mathematical part
- A MST is a
tree
- if a tree has
n
vertices then it must haven - 1
edges. - Therefore MST
men
andwomen
must be tree hence equated ton - 1
- and later equation means that, we had
m
edges- out of that
common / 2
taken bytype 3
women
bytype 2
men
by 'type 1'
- out of that
- we simply printing the remaining edges.
- A MST is a
- Made
Kruskal's implementation
struct info {
int from, to, weight;
};
void solve() {
int n, m;
cin >> n >> m;
vector<info> edges(m);
for (int i = 0; i < m; i++) {
cin >> edges[i].from >> edges[i].to >> edges[i].weight;
}
sort(all(edges),
[](const auto &a, const auto &b) -> bool { return a.wt > b.wt; });
UnionFind men(n + 5);
UnionFind women(n + 5);
int common = 0;
int countMen = 0;
int countWomen = 0;
for (const auto &i : edges) {
if (i.weight == 3) {
if (!men.isSameSet(i.from, i.to)) {
men.unionSet(i.from, i.to);
common++;
}
if (!women.isSameSet(i.from, i.to)) {
women.unionSet(i.from, i.to);
common++;
}
} else if (i.weight == 2) {
if (!women.isSameSet(i.from, i.to)) {
women.unionSet(i.from, i.to);
countWomen++;
}
} else if (i.weight == 1) {
if (!men.isSameSet(i.from, i.to)) {
men.unionSet(i.from, i.to);
countMen++;
}
}
}
if (common / 2 + countMen == n - 1 and common / 2 + countWomen == n - 1) {
cout << m - common / 2 - countMen - countWomen << '\n';
} else
cout << "-1\n";
}
Prims(TLE in 2TC's) implementation
void add_edge(map<int, vector<pair<int, int>>> &mp, int u, int v, int type) {
mp[u].push_back(make_pair(type, v));
mp[v].push_back(make_pair(type, u));
}
int main() {
int n, k;
cin >> n >> k;
map<int, vector<pair<int, int>>> edges;
for (int i = 0; i < k; i++) {
int u, v, type;
cin >> u >> v >> type;
add_edge(edges, u, v, type);
}
vector<int> male(n, false);
vector<int> female(n, false);
priority_queue<pair<int, int>> pq;
pq.push({0, 1});
male[0] = true;
female[0] = true;
int cnt = 0;
while (!pq.empty()) {
pair<int, int> temp = pq.top();
pq.pop();
int temp2 = temp.first;
int node = temp.second;
if (temp2 == 3 && (!male[node - 1] || !female[node - 1])) {
male[node - 1] = true;
female[node - 1] = true;
cnt++;
} else if (temp2 == 2 && !female[node - 1]) {
female[node - 1] = true;
cnt++;
} else if (temp2 == 1 && !male[node - 1]) {
male[node - 1] = true;
cnt++;
}
for (auto x : edges[node]) {
if (x.first == 3 && (!male[x.second - 1] || !female[x.second - 1]))
pq.push(x);
if (x.first == 2 && !female[x.second - 1])
pq.push(x);
if (x.first == 1 && !male[x.second - 1])
pq.push(x);
}
}
bool flag = true;
for (int i = 0; i < n; i++) {
if (!male[i] || !female[i]) {
flag = false;
break;
}
}
if (!flag)
cout << "-1\n";
else
cout << k - cnt << '\n';
return 0;
}