-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgds2gltf.py
executable file
·469 lines (355 loc) · 19.5 KB
/
gds2gltf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#!/usr/bin/env python3
"""
This program converts a GDSII 2D layout file to a glTF 3D file
USAGE:
- edit the "layerstack" variable in the "CONFIGURATION" section below
- run "gdsiigtlf file.gds"
OUTPUT:
- the files file.gds.gltf
The program takes one argument, a path to a GDSII file. It reads shapes from
each layer of the GDSII file, converts them to polygon boundaries, then makes
a triangle mesh for each GDSII layer by extruding the polygons to given sizes.
All units, including the units of the exported file, are the GDSII file's
user units (often microns).
"""
import sys # read command-line arguments
import gdspy # open gds file
import numpy as np # fast math on lots of points
import triangle # triangulate polygons
import pygltflib
from pygltflib import BufferFormat
from pygltflib.validator import validate, summary
# get the input file name
if len(sys.argv) < 2: # sys.argv[0] is the name of the program
print("Error: need exactly one file as a command line argument.")
sys.exit(0)
gdsii_file_path = sys.argv[1]
########## CONFIGURATION (EDIT THIS PART) #####################################
# choose which GDSII layers to use
layerstack = {
(235,4): {'name':'substrate', 'zmin':-2, 'zmax':0, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(64,20): {'name':'nwell', 'zmin':-0.5, 'zmax':0.01, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (65,44): {'name':'tap', 'zmin':0, 'zmax':0.1, 'color':[ 0.4, 0.4, 0.4, 1.0]},
(65,20): {'name':'diff', 'zmin':-0.12, 'zmax':0.02, 'color':[ 0.9, 0.9, 0.9, 1.0]},
(66,20): {'name':'poly', 'zmin':0, 'zmax':0.18, 'color':[ 0.75, 0.35, 0.46, 1.0]},
(66,44): {'name':'licon', 'zmin':0, 'zmax':0.936, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(67,20): {'name':'li1', 'zmin':0.936, 'zmax':1.136, 'color':[ 1.0, 0.81, 0.55, 1.0]},
(67,44): {'name':'mcon', 'zmin':1.011, 'zmax':1.376, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(68,20): {'name':'met1', 'zmin':1.376, 'zmax':1.736, 'color':[ 0.16, 0.38, 0.83, 1.0]},
(68,44): {'name':'via', 'zmin':1.736,'zmax':2, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(69,20): {'name':'met2', 'zmin':2, 'zmax':2.36, 'color':[ 0.65, 0.75, 0.9, 1.0]},
(69,44): {'name':'via2', 'zmin':2.36, 'zmax':2.786, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(70,20): {'name':'met3', 'zmin':2.786, 'zmax':3.631, 'color':[ 0.2, 0.62, 0.86, 1.0]},
(70,44): {'name':'via3', 'zmin':3.631, 'zmax':4.0211, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(71,20): {'name':'met4', 'zmin':4.0211, 'zmax':4.8661, 'color':[ 0.15, 0.11, 0.38, 1.0]},
(71,44): {'name':'via4', 'zmin':4.8661, 'zmax':5.371, 'color':[ 0.2, 0.2, 0.2, 1.0]},
(72,20): {'name':'met5', 'zmin':5.371, 'zmax':6.6311, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (83,44): { 'zmin':0, 'zmax':0.1, 'name':'text'},
}
# layerstack = {
# (235,4): {'name':'substrate', 'zmin':-1, 'zmax':0, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# # (64,20): {'name':'nwell', 'zmin':0, 'zmax':0.1, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# # (65,44): {'name':'tap', 'zmin':0, 'zmax':0.1, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (65,20): {'name':'diff', 'zmin':-0.12, 'zmax':0.01, 'color':[ 0.9, 0.9, 0.9, 1.0]},
# (66,20): {'name':'poly', 'zmin':0, 'zmax':0.18, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (66,44): {'name':'licon', 'zmin':0, 'zmax':0.936, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (67,20): {'name':'li1', 'zmin':0.936, 'zmax':1.136, 'color':[ 0.9, 0.9, 0.9, 1.0]},
# (67,44): {'name':'mcon', 'zmin':1.011, 'zmax':1.376, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# (68,20): {'name':'met1', 'zmin':1.376, 'zmax':1.736, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (68,44): {'name':'via', 'zmin':1.736,'zmax':2, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# (69,20): {'name':'met2', 'zmin':2, 'zmax':2.36, 'color':[ 0.9, 0.9, 0.9, 1.0]},
# (69,44): {'name':'via2', 'zmin':2.36, 'zmax':2.786, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# (70,20): {'name':'met3', 'zmin':2.786, 'zmax':3.631, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# (70,44): {'name':'via3', 'zmin':3.631, 'zmax':4.0211, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# (71,20): {'name':'met4', 'zmin':4.0211, 'zmax':4.8661, 'color':[ 0.9, 0.9, 0.9, 1.0]},
# (71,44): {'name':'via4', 'zmin':4.8661, 'zmax':5.371, 'color':[ 0.2, 0.2, 0.2, 1.0]},
# (72,20): {'name':'met5', 'zmin':5.371, 'zmax':6.6311, 'color':[ 0.4, 0.4, 0.4, 1.0]},
# # (83,44): { 'zmin':0, 'zmax':0.1, 'name':'text'},
# }
########## INPUT ##############################################################
# First, the input file is read using the gdspy library, which interprets the
# GDSII file and formats the data Python-style.
# See https://gdspy.readthedocs.io/en/stable/index.html for documentation.
# Second, the boundaries of each shape (polygon or path) are extracted for
# further processing.
print('Reading GDSII file {}...'.format(gdsii_file_path))
gdsii = gdspy.GdsLibrary()
gdsii.read_gds(gdsii_file_path, units='import')
gltf = pygltflib.GLTF2()
scene = pygltflib.Scene()
gltf.scenes.append(scene)
buffer = pygltflib.Buffer()
gltf.buffers.append(buffer)
for layer in layerstack:
mainMaterial = pygltflib.Material()
mainMaterial.doubleSided = False
mainMaterial.name = layerstack[layer]['name']
mainMaterial.pbrMetallicRoughness = {
"baseColorFactor": layerstack[layer]['color'],
"metallicFactor": 0.5,
"roughnessFactor": 0.5
}
gltf.materials.append(mainMaterial)
binaryBlob = bytes()
print('Extracting polygons...')
meshes_lib = {}
for cell in gdsii.cells.values(): # loop through cells to read paths and polygons
layers = {} # array to hold all geometry, sorted into layers
print ("\nProcessing cell: ", cell.name)
# $$$CONTEXT_INFO$$$ is a separate, non-standard compliant cell added
# optionally by KLayout to store extra information not needed here.
# see https://www.klayout.de/forum/discussion/1026/very-
# important-gds-exported-from-k-layout-not-working-on-cadence-at-foundry
if cell.name == '$$$CONTEXT_INFO$$$':
continue # skip this cell
print ("\tpaths loop. total paths:" , len(cell.paths))
# loop through paths in cell
for path in cell.paths:
lnum = (path.layers[0],path.datatypes[0]) # GDSII layer number
if not lnum in layerstack.keys():
continue
layers[lnum] = [] if not lnum in layers else layers[lnum]
# add paths (converted to polygons) that layer
for poly in path.get_polygons():
layers[lnum].append((poly, None, False))
print ("\tpolygons loop. total polygons:" , len(cell.polygons))
# loop through polygons (and boxes) in cell
for polygon in cell.polygons:
lnum = (polygon.layers[0],polygon.datatypes[0]) # same as before...
if not lnum in layerstack.keys():
continue
layers[lnum] = [] if not lnum in layers else layers[lnum]
for poly in polygon.polygons:
layers[lnum].append((poly, None, False))
"""
At this point, "layers" is a Python dictionary structured as follows:
layers = {
0 : [ ([[x1, y1], [x2, y2], ...], None, False), ... ]
1 : [ ... ]
2 : [ ... ]
...
}
Each dictionary key is a GDSII layer number (0-255), and the value of the
dictionary at that key (if it exists; keys were only created for layers with
geometry) is a list of polygons in that GDSII layer. Each polygon is a 3-tuple
whose first element is a list of points (2-element lists with x and y
coordinates), second element is None (for the moment; this will be used later),
and third element is False (whether the polygon is clockwise; will be updated).
"""
########## TRIANGULATION ######################################################
# An STL file is a list of triangles, so the polygons need to be filled with
# triangles. This is a surprisingly hard algorithmic problem, especially since
# there are few limits on what shapes GDSII file polygons can be. So we use the
# Python triangle library (documentation is at https://rufat.be/triangle/),
# which is a Python interface to a fast and well-written C library also called
# triangle (with documentation at https://www.cs.cmu.edu/~quake/triangle.html).
print('\tTriangulating polygons...')
num_triangles = {} # will store the number of triangles for each layer
# loop through all layers
for layer_number, polygons in layers.items():
# but skip layer if it won't be exported
if not layer_number in layerstack.keys():
continue
num_triangles[layer_number] = 0
# loop through polygons in layer
for index, (polygon, _, _) in enumerate(polygons):
num_polygon_points = len(polygon)
# determine whether polygon points are CW or CCW
area = 0
for i, v1 in enumerate(polygon): # loop through vertices
v2 = polygon[(i+1) % num_polygon_points]
area += (v2[0]-v1[0])*(v2[1]+v1[1]) # integrate area
clockwise = area > 0
# GDSII implements holes in polygons by making the polygon edge
# wrap into the hole and back out along the same line. However,
# this confuses the triangulation library, which fills the holes
# with extra triangles. Avoid this by moving each edge back a
# very small amount so that no two edges of the same polygon overlap.
delta = 0.00001 # inset each vertex by this much (smaller has broken one file)
points_i = polygon # get list of points
points_j = np.roll(points_i, -1, axis=0) # shift by 1
points_k = np.roll(points_i, 1, axis=0) # shift by -1
# calculate normals for each edge of each vertex (in parallel, for speed)
normal_ij = np.stack((points_j[:, 1]-points_i[:, 1],
points_i[:, 0]-points_j[:, 0]), axis=1)
normal_ik = np.stack((points_i[:, 1]-points_k[:, 1],
points_k[:, 0]-points_i[:, 0]), axis=1)
length_ij = np.linalg.norm(normal_ij, axis=1)
length_ik = np.linalg.norm(normal_ik, axis=1)
normal_ij /= np.stack((length_ij, length_ij), axis=1)
normal_ik /= np.stack((length_ik, length_ik), axis=1)
if clockwise:
normal_ij = -1*normal_ij
normal_ik = -1*normal_ik
# move each vertex inward along its two edge normals
polygon = points_i - delta*normal_ij - delta*normal_ik
# In an extreme case of the above, the polygon edge doubles back on
# itself on the same line, resulting in a zero-width segment. I've
# seen this happen, e.g., with a capital "N"-shaped hole, where
# the hole split line cuts out the "N" shape but splits apart to
# form the triangle cutout in one side of the shape. In any case,
# simply moving the polygon edges isn't enough to deal with this;
# we'll additionally mark points just outside of each edge, between
# the original edge and the delta-shifted edge, as outside the polygon.
# These parts will be removed from the triangulation, and this solves
# just this case with no adverse affects elsewhere.
hole_delta = 0.00001 # small fraction of delta
holes = 0.5*(points_j+points_i) - hole_delta*delta*normal_ij
# HOWEVER: sometimes this causes a segmentation fault in the triangle
# library. I've observed this as a result of certain various polygons.
# Frustratingly, the fault can be bypassed by *rotating the polygons*
# by like 30 degrees (exact angle seems to depend on delta values) or
# moving one specific edge outward a bit. I have absolutely no idea
# what is wrong. In the interest of stability over full functionality,
# this is disabled. TODO: figure out why this happens and fix it.
use_holes = False
# triangulate: compute triangles to fill polygon
point_array = np.arange(num_polygon_points)
edges = np.transpose(np.stack((point_array, np.roll(point_array, 1))))
if use_holes:
triangles = triangle.triangulate(dict(vertices=polygon,
segments=edges,
holes=holes), opts='p')
else:
triangles = triangle.triangulate(dict(vertices=polygon,
segments=edges), opts='p')
if not 'triangles' in triangles.keys():
triangles['triangles'] = []
# each line segment will make two triangles (for a rectangle), and the polygon
# triangulation will be copied on the top and bottom of the layer.
num_triangles[layer_number] += num_polygon_points*2 + \
len(triangles['triangles'])*2
polygons[index] = (polygon, triangles, clockwise)
# glTF Mesh creation
zmin = layerstack[layer_number]['zmin']
zmax = layerstack[layer_number]['zmax']
layername = layerstack[layer_number]['name']
node_name = cell.name + "_" + layername
gltf_positions = []
gltf_indices = []
indices_offset = 0
for i,(_, poly_data, clockwise) in enumerate(polygons):
p_positions_top = np.insert(poly_data['vertices'], 2, zmax, axis=1)
p_positions_bottom = np.insert( poly_data['vertices'] , 2, zmin, axis=1)
p_positions = np.concatenate( (p_positions_top, p_positions_bottom) )
p_indices_top = poly_data['triangles']
p_indices_bottom = np.flip ((p_indices_top+len(p_positions_top)), axis=1 )
ind_list_top = np.arange(len(p_positions_top))
ind_list_bottom = np.arange(len(p_positions_top)) + len(p_positions_top)
if(clockwise):
ind_list_top = np.flip(ind_list_top, axis=0)
ind_list_bottom = np.flip(ind_list_bottom, axis=0)
p_indices_right = np.stack( (ind_list_bottom, np.roll(ind_list_bottom, -1, axis=0) , np.roll(ind_list_top, -1, axis=0)), axis=1 )
p_indices_left = np.stack( ( np.roll(ind_list_top, -1, axis=0), ind_list_top , ind_list_bottom ) , axis=1)
p_indices = np.concatenate( (p_indices_top, p_indices_bottom, p_indices_right, p_indices_left) )
if(len(gltf_positions)==0):
gltf_positions = p_positions
else:
gltf_positions = np.append(gltf_positions , p_positions, axis=0)
if(len(gltf_indices)==0):
gltf_indices = p_indices
else:
gltf_indices = np.append(gltf_indices, p_indices + indices_offset, axis=0)
indices_offset += len(p_positions)
indices_binary_blob = gltf_indices.astype(np.uint32).flatten().tobytes() #triangles.flatten().tobytes()
positions_binary_blob = gltf_positions.astype(np.float32).tobytes() #points.tobytes()
bufferView1 = pygltflib.BufferView()
bufferView1.buffer = 0
bufferView1.byteOffset = len(binaryBlob)
bufferView1.byteLength = len(indices_binary_blob)
bufferView1.target = pygltflib.ELEMENT_ARRAY_BUFFER
gltf.bufferViews.append(bufferView1)
accessor1 = pygltflib.Accessor()
accessor1.bufferView = len(gltf.bufferViews)-1
accessor1.byteOffset = 0
accessor1.componentType = pygltflib.UNSIGNED_INT
accessor1.type = pygltflib.SCALAR
accessor1.count = gltf_indices.size
accessor1.max = [int(gltf_indices.max())]
accessor1.min = [int(gltf_indices.min())]
gltf.accessors.append(accessor1)
binaryBlob = binaryBlob + indices_binary_blob
bufferView2 = pygltflib.BufferView()
bufferView2.buffer = 0
bufferView2.byteOffset = len(binaryBlob)
bufferView2.byteLength = len(positions_binary_blob)
bufferView2.target = pygltflib.ARRAY_BUFFER
gltf.bufferViews.append(bufferView2)
positions_count = len(gltf_positions)
accessor2 = pygltflib.Accessor()
accessor2.bufferView = len(gltf.bufferViews)-1
accessor2.byteOffset = 0
accessor2.componentType = pygltflib.FLOAT
accessor2.count = positions_count
accessor2.type = pygltflib.VEC3
accessor2.max = gltf_positions.max(axis=0).tolist()
accessor2.min = gltf_positions.min(axis=0).tolist()
gltf.accessors.append(accessor2)
binaryBlob = binaryBlob + positions_binary_blob
mesh = pygltflib.Mesh()
mesh_primitive = pygltflib.Primitive()
mesh_primitive.indices = len(gltf.accessors)-2
mesh_primitive.attributes.POSITION = len(gltf.accessors)-1
mesh_primitive.material = list(layerstack).index(layer_number)
mesh.primitives.append(mesh_primitive)
gltf.meshes.append(mesh)
meshes_lib[node_name] = len(gltf.meshes)-1
gltf.set_binary_blob(binaryBlob)
buffer.byteLength = len(binaryBlob)
gltf.convert_buffers(BufferFormat.DATAURI)
def add_cell_node(c, parent_node, prefix):
for ref in c.references:
instance_node = pygltflib.Node()
instance_node.extras = {}
instance_node.extras["type"] = ref.ref_cell.name;
if(ref.properties.get(61)==None):
# ref.ref_cell.name
instance_node.name = "???";
else:
instance_node.name = ref.properties[61]
print(prefix, instance_node.name, "(", ref.ref_cell.name + ")")
instance_node.translation = [ref.origin[0], ref.origin[1], 0]
if(ref.rotation!=None):
if(ref.rotation==90):
instance_node.rotation = [ 0, 0, 0.7071068, 0.7071068 ]
elif(ref.rotation==180):
instance_node.rotation = [ 0, 0, 1, 0 ]
elif(ref.rotation==270):
instance_node.rotation = [ 0, 0, 0.7071068, -0.7071068 ]
if(ref.x_reflection):
instance_node.scale = [1,-1,1]
for layer in layerstack.values():
lib_name = ref.ref_cell.name + "_" + layer['name']
if(meshes_lib.get(lib_name)!=None):
layer_node = pygltflib.Node()
layer_node.name = lib_name
layer_node.mesh = meshes_lib[lib_name]
gltf.nodes.append(layer_node)
instance_node.children.append(len(gltf.nodes)-1)
if(len(ref.ref_cell.references)>0):
add_cell_node(ref.ref_cell, instance_node, prefix + "\t")
gltf.nodes.append(instance_node)
parent_node.children.append(len(gltf.nodes)-1)
main_cell = gdsii.top_level()[0]
root_node = pygltflib.Node()
root_node.name = main_cell.name #"ROOT"
gltf.nodes.append(root_node)
print ("\nBuilding Scenegraph:")
print(root_node.name)
add_cell_node(main_cell, root_node, "\t")
for layer in layerstack.values():
lib_name = main_cell.name + "_" + layer['name']
if(meshes_lib.get(lib_name)!=None):
layer_node = pygltflib.Node()
layer_node.name =lib_name
layer_node.mesh = meshes_lib[lib_name]
gltf.nodes.append(layer_node)
root_node.children.append(len(gltf.nodes)-1)
scene.nodes.append(0)
gltf.scene = 0
# validate(gltf) # will throw an error depending on the problem
# summary(gltf)
print ("\nWriting glTF file:")
gltf.save(gdsii_file_path + ".gltf")
# gltf.save("output.gltf")
print('Done.')