From 95b42394a1f9b7ea8c33142a6c6c7cc0297f7df2 Mon Sep 17 00:00:00 2001 From: Miller Cy Chan Date: Sat, 4 Mar 2023 11:52:41 +0800 Subject: [PATCH] Add files via upload --- algorithm/NsgaIII.py | 75 ++++++++++++-------------------------------- model/Schedule.py | 2 +- 2 files changed, 21 insertions(+), 56 deletions(-) diff --git a/algorithm/NsgaIII.py b/algorithm/NsgaIII.py index 0d286fc..05c5ceb 100644 --- a/algorithm/NsgaIII.py +++ b/algorithm/NsgaIII.py @@ -53,16 +53,6 @@ def __init__(self, M): self.position = np.zeros(M) self._potentialMembers = {} - @staticmethod - def generateRecursive(rps, pt, numObjs, left, total, element): - if element == numObjs - 1: - pt.position[element] = left * 1.0 / total - rps.append(pt) - else: - for i in range(left + 1): - pt.position[element] = i * 1.0 / total - NsgaIII.ReferencePoint.generateRecursive(rps, pt, numObjs, left - i, total, element + 1) - def addMember(self): self.memberSize += 1 @@ -94,12 +84,21 @@ def removePotentialMember(self, memberInd): @staticmethod def generateReferencePoints(rps, M, p): + def generateRecursive(rps, pt, numObjs, left, total, element): + if element == numObjs - 1: + pt.position[element] = left / total + rps.append(pt) + else: + for i in range(left + 1): + pt.position[element] = i / total + generateRecursive(rps, pt, numObjs, left - i, total, element + 1) + pt = NsgaIII.ReferencePoint(M) - NsgaIII.ReferencePoint.generateRecursive(rps, pt, M, p[0], p[0], 0) + generateRecursive(rps, pt, M, p[0], p[0], 0) if len(p) > 1: # two layers of reference points (Check Fig. 4 in NSGA-III paper) insideRps = [] - NsgaIII.ReferencePoint.generateRecursive(insideRps, pt, M, p[1], p[1], 0) + generateRecursive(insideRps, pt, M, p[1], p[1], 0) center = 1.0 / M for insideRp in insideRps: @@ -111,18 +110,13 @@ def generateReferencePoints(rps, M, p): def perpendicularDistance(self, direction, point): - numerator, denominator = 0, 0 - for i, dir in enumerate(direction): - numerator += dir * point[i] - denominator += dir ** 2 + numerator, denominator = np.sum(direction * point), np.sum(direction ** 2) if denominator <= 0: return sys.float_info.max - k, d = numerator / denominator, 0 - for i, dir in enumerate(direction): - d += (k * dir - point[i]) ** 2 - + k = numerator / denominator + d = np.sum((k * direction - point) ** 2) return np.sqrt(d) def associate(self, rps, pop, fronts): @@ -139,25 +133,6 @@ def associate(self, rps, pop, fronts): else: rps[minRp].addPotentialMember(memberInd, minDist) - def guassianElimination(self, A, b): - N = len(A) - for i in range(N): - A[i].append(b[i]) - - for base in range(N - 1): - for target in range(base + 1, N): - ratio = A[target][base] / A[base][base] - for term in range(len(A[base])): - A[target][term] -= A[base][term] * ratio - - x = np.zeros(N) - for i in range(N - 1, -1, -1): - for known in range(i + 1, N): - A[i][N] -= A[i][known] * x[known] - - x[i] = A[i][N] / A[i][i] - - return x # ASF: Achivement Scalarization Function def ASF(self, objs, weight): @@ -228,11 +203,9 @@ def constructHyperplane(self, pop, extremePoints): intercepts, negativeIntercept = [], False if not duplicate: # Find the equation of the hyperplane - b, A = np.ones(numObj), [[] * len(extremePoints)] - for p, extremePoint in enumerate(extremePoints): - A[p] = pop[extremePoint].convertedObjectives + b, A = np.ones(numObj), [pop[extremePt].convertedObjectives for extremePt in extremePoints] + x = np.linalg.solve(A, b) - x = self.guassianElimination(A, b) # Find intercepts for f in range(numObj): intercepts.append(1.0 / x[f]) @@ -251,11 +224,7 @@ def normalizeObjectives(self, pop, fronts, intercepts, idealPoint): for front in fronts: for i, ind in enumerate(front): convObjs = pop[ind].convertedObjectives - for f, convObj in enumerate(convObjs): - if abs(intercepts[f] - idealPoint[f]) > np.finfo(float).eps: # avoid the divide-by-zero error - convObj /= intercepts[f] - idealPoint[f] - else: - convObj /= np.finfo(float).eps + convObjs /= intercepts - idealPoint + np.finfo(float).eps def nondominatedSort(self, pop): @@ -311,14 +280,11 @@ def translateObjectives(self, pop, fronts): for front in fronts: for ind in front: pop[ind].resizeConvertedObjectives(numObj) - convertedObjectives = pop[ind].convertedObjectives - convertedObjectives[f] = pop[ind].objectives[f] - minf + pop[ind].convertedObjectives[f] = pop[ind].objectives[f] - minf return idealPoint def selection(self, cur, rps): - next = [] - # ---------- Step 4 in Algorithm 1: non-dominated sorting ---------- fronts = self.nondominatedSort(cur) @@ -329,10 +295,9 @@ def selection(self, cur, rps): last += 1 fronts = fronts[: last] # remove useless individuals - + next = [] for t in range(len(fronts) - 1): - for frontIndv in fronts[t]: - next.append(cur[frontIndv]) + next += [ cur[frontIndv] for frontIndv in fronts[t] ] # ---------- Steps 9-10 in Algorithm 1 ---------- if len(next) == self._populationSize: diff --git a/model/Schedule.py b/model/Schedule.py index 2396f64..43dcace 100644 --- a/model/Schedule.py +++ b/model/Schedule.py @@ -416,7 +416,7 @@ def objectives(self): return self._objectives def resizeConvertedObjectives(self, numObj): - self._convertedObjectives = numObj * [0] + self._convertedObjectives = np.zeros(numObj) def clone(self): return self.copy(self, False)